
Worksheet 3 – Random Forests
Worksheet 3

Camille Mondon

February 26, 2024

The aim of this worksheet1 is to learn how to use random forests with R. This requires the package randomForest,
that should be installed and loaded. The method is illustrated on examples taken from the UCI Machine Learning
repository. The corresponding datasets are available in the R package mlbench:

library(randomForest)
library(mlbench)

Random forest: training, interpretation and tuning

Exercise 1. In this exercise, we use random forests to discriminate between sonar signals bounced off a metal
cylinder and sonar signals bounced off a roughly cylindrical rock. The data are contained in the dataset Sonar:

data(Sonar)

1. Using

?Sonar

tell how many possible predictors the dataset includes. What are their types? How many observations are there?

2. Randomly split the data into a training set (with size 100) and a test set (with size 108).

3. Use the function randomForest to train a random forest on the training set with default parameters (use the
formula syntax described in ?randomForest and the options keep.inbag=TRUE and importance=TRUE). What
are the OOB predictions (for this training set)? Deduce the resulting OOB error. Display the confusion matrix
associated with OOB predictions.

4. Using ?randomForest, describe what is in ntree, mtry, votes, oob.times, err.rate, and inbag in the random
forest object from the previous question.

5. What is the OOB prediction for the 50th observation in the training set? What is the true class for this observation?
How many times has it been included to design a tree? In which trees has it been included? How many (OOB)
trees voted for the prediction ‘R’ for this observation?

6. Using the plot.randomForest function, make a plot that displays the evolution of the OOB error rate when the
number of trees in the forest increases. What do the various curves represent? Add a legend and comment.

1The content of this worksheet is strongly based on a worksheet designed by Nathalie Vialaneix and Davy Paindaveine.

1

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

7. Using ?randomForest again, describe what is in importance in the random forest object. Make a barplot of the
predictor importances ranked in decreasing order.

8. With the function predict, predict the output of the random forest on the test set and find the test misclassifica-
tion rate. Comment.

9. Use the package e1071 and the function tune.randomForest to find, with a 10-fold cross validation (this is the
default) performed on the training set, which pair of parameters is the best among ntree=c(500, 1000, 1500,
2000) and mtry=c(5, 7, 10, 15, 20). Set the option importance to TRUE so that you can later explore the
predictor importances for the best model. Use the functions summary and plot to interpret the results.

library(e1071)

10. From the previous question, extract the best model (in the object obtained with the function tune.randomForest,
it is in $best.model). Compare its OOB error and its evolution, its most important predictors and its test error
with the random forest obtained with default parameters. Comment.

Comparison between random forests and bagging-of-trees

Exercise 2. The aim of this exercise is to compare random forests with bagging-of-trees from an accuracy point of
view. The comparison is illustrated on the dataset Vehicle

data(Vehicle)

(from package mlbench), whose purpose is to classify vehicles into four types (“bus”, “opel”, “saab”, and “van”)
based on features charactering the vehicle silhouettes.

1. Using

?Vehicle

read the description of the dataset. How many possible predictors does the dataset include and what are their
types? How many observations are there?

2. Split (randomly) the data set into a training set (with size 400) and a test set (with size 446).

3. Using the function tune.randomForest, train the best random forest that can be obtained by considering a
combination of ntree=c(500, 1000, 2000, 3000) and mtry=c(4, 5, 6, 8, 10). Keep the variable im-
portances (with the option importance=TRUE). Use the options xtest and ytest to obtain the test error directly.
Analyze the results of the tuning process.

Warning: When using the options xtest and ytest, the forest is not kept (hence cannot be used later to make
predictions with new data). To use it with the method tune, you must then set keep.forest=TRUE (otherwise the
function will return an error when trying to compute the CV error).

4. Analyze the best forest obtained with the tuning process in the previous question in term of OOB error and test
error. Plot the evolution of the OOB errors (as function of the number of trees). Make a barplot of the predictor
importances ranked in decreasing order.

5. Using the function bagging from the package ipred, train a bagging-of-trees classifier on the training set.
Evaluate the corresponding OOB error and test error. Compare it with those of the random forest selected above.

6. Using the function rpart (from the package rpart), train an individual tree classifier on the training set.
Evaluate the corresponding test error. Compare it with the test errors associated with the random forest and the
bagging-of-trees classifier.

2

	Random forest: training, interpretation and tuning
	Comparison between random forests and bagging-of-trees

