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The principal component analysis (PCA) is a method of exploratory multivariate data analysis which belongs to the
family of factorial methods (Abdi and Williams 2010).

1 Nature of the data

The data are presented in a table X = (X l] )i{fg where rows (X;|--- IXn)T are considered as individuals and columns

(X'|---1XP) as quantitative variables. The size of the table is n x p where n is the number of individuals and p is the
number of quantitative variables.

2 Objectives of PCA

PCA has two principal objectives:

* Summarize the table X in a small number d of new variables uncorrelated between them and which will
keep the maximum of the information contained in the p initial variables.

Intuitively, the new variables are obtained by “mixing together” the initial variables which are well correlated
between each others.

The number d of these new variables is smaller if the correlations between the p initial variables are large.
As a by-product, PCA leads to a visualization of the correlations between the initial variables.

e Interpret the table X using the new variables and graphics such as scatterplots.

PCA allows in particular to detect outliers or to find groups of individuals having the same behavior with respect
to the considered variables.

PCA is unsupervised: it ignores any response variable and only looks at the covariances or correlations among
predictors.

3 Principles of PCA

3.1 What ‘information’ means
In order to achieve the aim of “keeping the maximum of information contained in a set of data”, we need a
mathematically defined concept representing that information.

In this course, we consider (see Note 1 for a justification) that the information is based on the variability of the data
and is measured using the variance:
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* The ‘information’ brought by a quantitative variable is its variance.

e The ‘information’ brought by a random vector composed of p variables is the sum of the variances its
variables.

In order to avoid confusions with other notions of information, from now on, we will talk about inertia instead of
information.

Definition 3.1 (Inertia). The inertia of a data table X = (X!|---|XP) € R**P is:

p .
Ix=)_ Var(X/).
j=1

The inertia is often called total variance.

Exercise 3.1. Is it the variance of the sum of the variables of X? What link with the sample covariance matrix of X?

i1 Note 1: Inertia and dimension reduction

Our objective of summarizing the table X with less variables can be thought of as a problem of dimension
reduction. Let us restrict, for ease of intepretation, to the affine dimension reduction problem, whose
objective is to find, for a reduced dimension d < p:

* an affine compression transformation ¢ : R” — R%
« an affine decompression transformation i : R? — R”

that minimize the expected squared reconstruction error:

minE| X — X)|1?
nir I yopX)

where X € R? denotes a random variable following the empirical measure of the sample (Xi,..., X,) (intro-
duced to avoid writing averages over the sample).

It can be shown (Sangnier 2025, sec. 3.1.1) that this problem boils down to maximizing the inertia (or total
variance) of the affine transformed data:

max  tr(V' Cov[X]V) = max Iy
VeRP*d VTV=], VeRPxd VTV =1,

3.2 Standardized variables
Whenever the variables in a data table X are not in the same physical unit (e.g. euros, kilograms, meters, dimen-
sionless), a unit conversion could be considered that would change the inertia of X.

That is why in that case we always scale the table X by standardizing each of its variables

S XI-XxJ
X ==,
ij

o) that; =0 and Var(x/) = 1. Therefore, standardized variables have the same inertia (equal to 1). The standardized
table is denoted by x.



@ Remark
Remark 3.1. This scaling preserves the correlations among variables:
cor(x¥, x7) = cor(X*, X7).

In this course, PCA is performed on standardized variables. It is a particular case of PCA sometimes called
standardized PCA. It is also called correlation PCA (this will make sense later).

3.3 Principal components
3.3.1 Heuristics

We want the first principal component c' to be a new variable, that is a linear combination of the variables
1.2 p.
x5 x%,...,xP:

1

cl=xvy=vixt + i+ 40

p
lx

such that the inertia (i.e. the variance) of ¢! is maximal.

@ Remark

Remark 3.2. As we could always multiply v; by a constant greater than 1 to increase the inertia of ¢!, we have
to ensure that the coefficients of v; are normalized. A way of doing so is to make v; belong to the sphere in
R”(i.e. that it represents a direction in the space called the first principal axis):

p
logll?:= Y (5H? =1
k=1

It will make sense later why this makes computations easier than other constraints.

The second principal component ¢?> = xv, should be defined as a new variable uncorrelated with c', a linear
combination of the variables x/,1 < j < p (with ||v2|| = 1) and of maximal variance.

The third principal component ¢ = xv3 should be uncorrelated with ¢! and c?, a linear combination of the
x1< Jj < p (with [lvs]l = 1) and of maximal variance.

The p-th principal component c” = xv,, should be uncorrelated with c',c?,...,cP~1, alinear combination of the
x/,1 < j < p (with |v,[l = 1) and of maximal variance.

If we successfully define such p uncorrelated components, we group then in a table denoted C = (ctc?|--+|cP). In
the end, we should have
Var(c!) = Var(c?) = --- = Var(cP).

Indeed, each new principal component should maximize the variance among a increasingly restricted choice of
variables (the ones that are uncorrelated with are the previous principals components), so the variance of the
principal components decreases.

1 Note 2: Uncorrelatedness vs. orthogonality

Here we explain how the iterative variance maximization problem defining principal components relates to
the global inertia maximization problem stated in Note 1.
Let V = (v |---| vp) be the matrix whose columns are the directions defining the principal components, so
that

C=xV.

At first sight, it is not obvious that the matrix V should be orthogonal, since orthogonality was not explicitly




imposed in the definition of the principal components.
Indeed, the first principal direction is defined as

V) = arg ||m|fa)§ Var(xv) = arg ||m|fa)i vTx xu.
vi= v|=

By first-order optimality on the unit sphere, the gradient of
f) = vix"xv

at v; must be orthogonal to the tangent space of the sphere at v;. This implies that

x'x v =M,
so vy is an eigenvector of x ' x.
The second principal direction v is obtained by maximizing the variance under the additional constraint
that xv» is uncorrelated with xv,. Using the relation

Cov(xvy,Xxv) = vlTxTxv =M vlT v,
this uncorrelatedness condition is equivalent to v, L v;.
Repeating the same gradient argument on the unit sphere intersected with the orthogonal complement of
span(v;) shows that
XTX Uy = A,z V2,

with v, L v;.
By induction, the iterative construction yields an orthonormal family (v1,..., vp) of eigenvectors of x'x. Asa
consequence,

Viv=1,

which is the orthogonality condition imposed on the matrix V from Note 1 (when d = p). This reasoning is
similar to that of Jolliffe (2002) but without relying on the Lagrangian method.

3.3.2 Definition

Now we should prove using the covariance matrix of x (i.e. the correlation matrix of X) that principal components
such as in Section 3.3.1 can be properly defined.

The correlation matrix

is symmetric and non-negative, because if
p ., T _
ueR”, u’ Ru=Var(xu) =0

Applying the spectral theorem to R, we obtain an orthonormal basis (v, ..., vp) of R” of eigenvectors of R and a
decreasing sequence A1 = --- = 1), = 0 of eigenvalues of R such that

Rvjlej Uj.

Definition 3.2 (Principal components & scores). If 1 < j < p, we define the j-th principal component of x as:
¢/ =xv j

If1<i<n,then c{ is called the score of individual i on the j-th principal component.




Definition 3.3 (Principal axes & loadings). If 1 < j < p, v; is called the j-th principal axis. If 1 < k < p, then

U}C is called the loading of variable x* on principal component ¢/.

1 Note 3: Connection with Courant-Fisher min-max theorem

The iterative variance-maximization procedure for defining principal components can be seen as a conse-

quence of the Courant-Fisher min-max theorem applied to the symmetric matrix R = —=x"x. It implies

n-1
that the j-th largest eigenvalue A satisfies

v' Ry

Aj= max =

veERP\{0} V'V
VJ_UI,...,UJ-,I

where vy,...,v;-1 are the eigenvectors associated with the j — 1 largest eigenvalues.
Thus, the j-th principal axis is the direction of maximal variance orthogonal to the previous principal axes.

3.3.3 Properties

Proposition 3.1.

* The principal components are centered: ¢/ =0 for1 < j < p.

e The eigenvalues of R are the variance explained by the principal components: Var(c/) = A jforl<j<p.
e The principal components are uncorrelated: r(c/,c*) =0 for1 < j # k < p.

 Principal Component Analysis preserves the inertia:

p
IC:Z/lj:Ix:p'
j=1

Whereas each column of x brings the same inertia (equal to 1), the columns of table C bring an inertia which
decreases with their index.

The first objective of PCA is then reached: table x can be summarized by a table containing less columns if the last
principal components have a little inertia.

@ Remark

Remark 3.3. PCA could be introduced at the population level instead of the sample level, but this is outside of
the scope of this course.

1 Note 4: Geometric approach to PCA

PCA can be introduced by other criteria than a statistical one (dimension reduction by minimizing the
expected reconstruction error, or variance maximization). The geometric approach is notably often presented
(only in the sample framework, not in the population framework, since it requires working with the data
table).

The strength of this geometric approach is that it works without any statistical assumption on the data set, so
interpretation is possible even in high-dimensional contexts.

The idea is that instead of relying on the correlation matrix —=x'x, we can multiply the data table x the other

n—1

way around, to obtain the Gram matrix:
T_ (4T 1=l=n
XX =(x; Xe)1<i<p

which encodes the geometric structure of the data set x (distances and angles).




We can show that the Gram matrix possesses the same nonzero eigenvalues than the correlation matrix, which
is the core result of singular value decomposition (SVD). This decomposition allows to work directly with the
data matrix, and is the mathematical foundation behind the implementation of PCA in practical algorithms.
It unifies the geometric and statistical approaches (recovering by multiplying the data table by its transpose
one way or the other):

x=UzV'

where

r < min(n, p) is the rank of x ;
U e R™7" and V € RP*" have orthonormal columns:

U'U=I,and V'V =1,.

> =diag(oy,...,0) e R is diagonal.
The singular values o ; are the square roots of the eigenvalues of R.

Then C = UZ =xV are the principal components and V is the loading matrix.

The Eckart-Young-Mirsky low-rank approximation theorem states that for any 1 < d < r, the truncated
SVD matrix X4 = UgyZ ) V([Ti) obtained by keeping only the d first columns of U, X and V is optimal in the
following sense:

IX=X@llp= min [X-M]|
() IF rank(M)<d F

where
2 T L&Y 2_ ¥ 02
M|z = te(M M):ZZMi =Y M7 =) 1M e.
i=1j=1 i=1 j=1

In particular, this theorem justifies why the biplot (d = 2) is based on the best rank-2 approximation of the
data set.

4 Component selection criteria

4.1 Percentage of explained variance criterion

When performing PCA, one must choose a number d of principal components that is sufficient to summarize the
total inertia of the data while losing as little inertia as possible. The total inertia of standardized variables is Ix = p,
and the inertia of the j-th component is

I, =Var(c/) = Aj.

The proportion of inertia explained by the first principal component c! is

. A
n=—,
p
by the first two components c!, ¢? is
. Mt
bh=——7,
p
and in general, by the first d components c!,...,c? is
d
T
lg =
p



Finally, the proportion of inertia explained by all p principal components is

Z’?_ )Lj
ip= " =P _100%.
p P

Criterion: Choose d so that the proportion of explained variance is sufficiently large, typically at least 80 %.

4.2 Kaiser criterion

The initial variables have a variance equal to 1 (standardized).

Criterion: Select the principal components whose variance is greater than 1, because they have more inertia than
the initial variables. This means than:
d=1{j,A;>1}|

4.3 Scree test criterion

The differences between eigenvalues are examined :

A =A2, Ay = A3, ...

In general, these differences decrease.

Criterion : Retain the d principal components so that the difference 14— 1441 is large and the differences 1; - 141
ford+1 < j < p—1 are small (elbow method).

5 Interpreting PCA

5.1 Interpreting the components

5.1.1 Presentation of the problem

Let us assume that, after using one of the previous criteria, d (small) principal components (or d dimensions or d
factors) have been selected.

One of the difficulties of PCA (and of factorial analysis in general) is the interpretation of the principal components.

PCA leads to a reduction of the variables number(from p to d) but if the signification of the initial variables is
known, it is not the case for the principal components.

5.1.2 Interpretation of the loadings

Foralll=sj=<d:

p
J gy = N ok
C—Xl/]—kzij
=1

The composition of the each principal component ¢/ is known and the important x* variables are associated to
large loadings v}c (since they have the same variance).

But this method is rarely used (the size of the coefficients is assessable with difficulty).



5.1.3 Interpretation of the correlations between the components and the initial variables

Proposition 5.1 (Correlations between variables and components). Foranyl < j, k < p:

cor(cj,xk) = ,/)Ljv}c

Moreover for a fixed variable x*, the squared correlations with all the principal components sum up to 1:

p .
Y cor(c!, x5)2 =1
j=1

This means that we could represent the initial variables x',...,x” as points on the unit hypersphere of the p-
dimensional Euclidean space of random variables generated by the principal components. The coordinates of the
initial variables are their correlations with the principal components.

But in general, it is preferable to represent the correlations by considering the selected principal components 2 by 2
and to interpret them graphically (this is possible because we selected a small number d of components so there is
d(d-1)

only =5— possible correlation plots.)

In that case, the points are not located on the circle but rather in the disk centered at the origin and of rayon 1. The
bounding circle (called the circle of correlations) is often drawn because it is helpful for the interpretation.

In a given principal plane, the variables that are too close to the origin (i.e. far from the circle) are not interesting
because because they are weakly correlated with the selected principal components and therefore are not useful for
their interpretation.

But if we exclude these variables, we can interpret each principal component according to strong correlations
(positive and negative).

@ Remark

Remark 5.1. The quality of representation of a variable x* by component ¢/ can be measured by cor(x¥, c/)2.
In a principal plane, the quality of representation of a variable will be its squared distance to the origin (or
norm).

1 Note 5: Space of variables

Note

Definition 5.1 (The L? Hilbert space of random variables). Let (Q, 23, P) be a probability space.
The space
[*(Q,P) = {X:Q — R|E[X?] < 00}

(where we say that X = Y when P(X = Y) =1) is a Hilbert space equipped with the inner product

(X,Y)=E[XY].

In this framework:

¢ the expectation E[X] is the inner product with the constant variable 1,
¢ the variance is the squared norm of the centered variable,

Var(X) = || X - E[X]?,
¢ the standard deviation is the norm of the centered variable,

ox =X -E[X]I,




¢ the covariance is the inner product of centered variables,
Cov(X,Y)=(X—-E[X], Y —E[Y]),

¢ the correlation is the cosine of the angle between centered variables,

(X —E[X], Y —E[YT])

cor(X,Y) = .
I X -E[XTI Y —E[Y]I

Thus, orthogonality transcribes uncorrelatedness.
Centering a variable corresponds to its orthogonal projection onto the closed subspace
X e IXQPIEIX] =0},

which is the kernel of the expectation operator.

Scaling a variable to unit variance corresponds to normalizing it to have unit norm in this space, so that it
belongs to the unit sphere.

That is where our standardized variables x!, ..., xP are located (since we work on sample PCA, we assume that
x* follows the empirical measure on the k-th column of x). More precisely they generate a finite-dimensional
subspace (of dimension less than p)

Z =span(x!,..., xP) = xv, v e RP},

when considering all the possible linear combinations of the initial variables.
On this space, the inner product is induced by the empirical covariance:

(xk,xe) = Cov(xk,xe).

Thus, the correlation matrix is simply the Gram matrix of the variables in this Euclidean space.
PCA consists in constructing an orthogonal basis (not orthonormal because the PCs have not a unit standard
deviation)

(c',...,c"

of & that diagonalizes the covariance operator and orders directions by decreasing variance (inertia).

The principal components are new orthogonal vectors in the space of variables, and the loading vectors
(v1,...,vp) describe the change of basis from the original variables to this orthonormal basis.

Because the initial variables have unit norm and the principal components are orthogonal (they are not scaled),
the coordinates of the initial variables in the basis of scaled principal components are the correlations with
the non-scaled principal components. This proves that the sum of squared correlations for a given variable
is just its variance, which is 1.

In parallel, PCA induces an orthonormal basis in the space of individuals through the dual geometry of
the data matrix. This duality explains why PCA simultaneously organizes variables (via correlations) and
individuals (via distances).

5.2 Interpreting the individuals

5.2.1 Graph of the individuals

After selecting d principal components, each individual i can be represented by its scores
(c},...,cf),

which are the coordinates of the projection of x; onto the subspace spanned by the principal axes vy, ..., V4.



In order to interpret the data set, individuals are represented in the space generated by the selected principal com-
ponents, usually taken two by two. When two components (¢/, ¢?) are considered, the corresponding representation
is called a principal plane.

These graphs are interpreted as standard scatter plots, taking into account the interpretation of the principal
components. However, as for variables, not all individuals are equally well represented in a given plane, and
individuals that are poorly represented should not be over-interpreted.

@ Remark (Projecting shrinkens the distances)

Remark 5.2 (Projecting shrinkens the distances). PCA can be understood as an orthogonal projection of
the data cloud in R” onto a subspace of dimension d, chosen so as to preserve as much inertia as possible.
Since any projection shortens distances, the interpretation of the graphs of individuals is reliable only if the
projection preserves a large proportion of their distance to the origin.

5.2.2 Measure of the quality of representation of the individuals

To quantify how well an individual is represented in a reduced space, we compare its distance to the origin before
and after projection.

Initially, an individual x; = (x}, ey xf ) has squared distance to the origin
2 L J\2 ‘ J\2
lxill® =) (x)* =Y (c)?,
j=1 j=1

where the second equality follows from the fact that the principal axes form an orthonormal basis of R”.

After projection onto the subspace spanned by the first d principal axes, the squared distance becomes

d .
1Paxil® =Y (c)?.
j=1

Definition 5.2. The quality of representation of individual i in the d-dimensional principal subspace is
therefore measured by the ratio

Jy2
Yo (e)
Py’
Y ()
which represents the proportion of the individual’s inertia preserved by the projection.

In particular, the quality of representation of individual i on a single principal component ¢/ is given by

(c

G

/Y2 .
: = cos® 0{,

where 9{ is the angle between the vector x; and the principal axis v;.
This quantity is called the squared cosine and measures how strongly the individual is aligned with the
principal axis associated with component ¢/.

@ Remark

Remark 5.3. The squared cosines sum up to 1 if we keep all the principal components:

p oo
Zcos 9{ =1.
j=1
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So in practice, individuals for which

d .
Y cos® 6!
j=1

is small are poorly represented in the principal planes and should be interpreted with caution.

5.2.3 Contributions of individuals for a component

In the previous section, we focused on one individual that we explained from the selected principal components.

Now we consider a given principal component ¢/ and we want to understand how each individual contributes to
cl.

Definition 5.3. We define the contribution of an individual x; to a principal component ¢/ as its squared
score normalized by the variance of the component:

Jy2
(c;)

J
ctr; = .
1 A/]

Remember that the squared scores sum up to the variance of the component:

so the sum of the contributions of all individuals is 1:

n .
> ctr! =1.
i=1
5.3 The biplot
Recall that the score matrix is
C=xV,
so since V is orthogonal:
x=CVT,

which is sometimes known as the reconstruction formula, because it recovers the original data table from the
scores and loadings.

The biplot is based on a approximated reconstruction enabling visual representation in lower dimension, using
only the d selected principal components.

Let Cy) = (c!,...,c% € R"™ be the scores of the n individuals on the selected d principal components, and
Vigy=(v1,...,vg) ERP *d he the corresponding loading vectors (principal axes). then

~ T
x=CaViay

In order to extract a maximum of properties of the biplot representation, we define rescaled score matrix repre-
senting the individuals:
_ -1/2 nxd
G= C(d)A(d) eR™4,
and the rescaled loading matrix representing the variables:

— 1/2 d
H= V(d)A(d) € RP* ’

11



where Ay = diag(1;,...,14) contains the variances of the first d principal components.

The rescaled reconstruction formula is now:
x~GH'.

Then the biplot is constructed by representing:

* Individuals as points given by the rows g3, ..., g, of G,

* Variables as vectors given by the rows hy, ..., hj of H.
This graphical representation has the following properties (that hold exactly if d = p or as approximationis d < p):

1. The cosine of the angle between any two vectors representing variables equals the correlation coefficient
between the corresponding variables:
hz hy

k ¢
—— =cor(x",x"),
Akl Bl

because HH' = (n—1)x'x= (n—1)R.

2. The cosine of the angle between a variable vector /; and a principal axis e; equals the correlation between
that variable and the principal component:

! .

k  _ k .jy_— k
—— =cor(x",c’)=+/Aiv3,
I Al 7

because || hi| = 1.

3. The inner product between the individual g; and variable /; recovers the value of the observation x{ :
- A
8 hj=x]
4. The Euclidean distance between the individuals g; and g; in G is proportional to the Mahalanobis distance
between them in the original variable space.

These properties justify why the biplot is a faithful low-dimensional representation: it simultaneously encodes
correlations between variables, contributions of variables to components, and the positions of individuals in the
principal component space.

6 Additional concepts and extensions

6.1 Size factor
When all the initial variables are positively correlated between them, the first principal component defines a size
factor.

A symmetric matrix (in our case the correlation matrix) having all its terms positive possesses a first eigenvector
whose coordinates have the same sign.

If they are chosen positive, the first principal component is then positively correlated with all the variables.

12



6.2 Rotation methods

One of the difficulties of PCA is the interpretation of the axes.
But when there are numerous variables with average correlations, the interpretation is difficult.

The role of rotation methods is to return the more clear-cut correlations, making the axes revolve which involves an
easier reading.

The VARIMAX rotation makes the axes turn preserving their orthogonality but the first factor is not any more the
axis of larger variance.

The VARIMAX rotation aims of maximizing the variance of the correlations in each column of the table of the
correlations between the principal components and the initial variables.

6.3 Kernel PCA

The geometric formulation of PCA based on the Gram matrix
xx'| = (xl—'rxﬁ)lsi,/sn
suggests a crucial observation: PCA only depends on inner products between observations.

This remark opens the door to a nonlinear extension of PCA.

6.3.1 Inner products and feature maps

Let /€ be a (possibly infinite-dimensional) Hilbert space and let
O:RP —
be a nonlinear feature map. Instead of working with the original data points x; € R”, we consider their images

D(x;) e A.

Applying PCA in ./ would require computing the Gram matrix
Gie =(DP(x;), P(x¢)) 7

However, /# may be very high-dimensional or even infinite-dimensional, making this approach infeasible di-
rectly.

6.3.2 The kernel trick
A kernel function is a symmetric function
k:RPxRP - R

such that there exists a feature map ® with

k(x,y) =(D(x), D)) 7.

This allows us to compute inner products in . without explicitly computing ®. Typical examples include:

* Linear kernel: k(x, y) = x" y
e Polynomial kernel: k(x,y) = (x y + ¢)?
¢ Gaussian (RBF) kernel: ,
lx—yl )
k(x,y)= -
(x,y) exp( 552

13



6.3.3 Kernel PCA

Kernel PCA consists in performing PCA on the transformed data ®(x;), ..., ®(x,) using only the kernel matrix

K = (k(xi,x¢)1<i,0<n-

After centering the kernel matrix, one computes its eigenvalues and eigenvectors. The principal components are
then expressed as nonlinear functions of the original data.

Kernel PCA thus:

¢ generalizes PCA to nonlinear structures,
* preserves the geometric interpretation of PCA,
* relies entirely on linear algebra in the sample space.

7 Conclusion

PCA is an unsupervised statistical method which can be applied:

* toanx p datatablex

e for p quantitative variables

* p>3

* when some variables are strongly correlated.

to obtain an interpretable compressed representation of the data set.

@ Remark

Remark 7.1. If R = I, then PCA is not useful.
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