Random Forests High-Dimensional Data Analysis and Machine Learning

Camille Mondon

2024-03-04

What can be improved?

Averaging reduces variability. . .

• We argued that bagging of trees will work because **averaging** reduces variability: if U_1, \ldots, U_n are uncorrelated with variance σ^2 , then

$$
Var[\bar{U}] = \frac{\sigma^2}{n}.
$$

- However, the *B* trees that are 'averaged' in bagging are **not uncorrelated**! This will result into a smaller reduction of the variability.
- Random forests have the flavour of bagging-of-trees, but they incorporate a modification that aims at **decorrelating the trees**.

The procedure

Random forests

- Like bagging-of-trees, random forests predict via majority voting from classification trees trained on *B* bootstrap samples.
- **However, whenever a split is designed in each tree, the split is only allowed among** *m*(<< *p*) **predictors randomly selected out of the** *p* **predictors**.
- **The rationale**: in a situation where there would be one strong predictor only, most bagged trees would use this predictor in the top split, which would result in highly correlated trees. The **tweak** above will prevent this, hence will lead to **less correlated trees**.

Random forests

Using *m* = *p* would simply provide bagging-of-trees. Using *m* small is appropriate when there are many correlated predictors. Common practice:

- For **classification** (where majority voting is used), $m \approx \sqrt{2}$ *p*.
- For **regression** (where tree predictions are averaged), $m \approx \frac{p}{3}$ $\frac{p}{3}$.

In both cases, results are actually not very sensitive to *m*.

Random forests

Random forests

- ⊠ are **nonparametric** and **efficient**
- ⊠ can deal with **a large number of predictors** (high dimension)
- ⊠ can cope with **both small and large sample sizes** (Big Data)

but they

- □ rely on a rather **black box** model, and
- □ are **not supported by strong theoretical results**

A simulation

Let us look at efficiency...

We repeated $M = 1000$ times the following experiment:

- (1) Split the channing data set into a training set (of size 300) and a test set (of size 162);
- (2) (a) train a classification tree on the training set and evaluate its test error (i.e., misclassification rate) on the test set;
	- (b) do the same with a bagging classifier using $B = 500$ trees;
	- (c) **do the same with a random forest classifier using the** randomForest **function in** R **with default parameters** p $(B = 500$ trees, $m \approx \sqrt{p}$).

This provided $M = 1000$ test errors for the direct (single-tree) approach, $M = 1000$ test errors for the bagging approach, and *M* = 1000 test errors for the random forest approach.

A simulation

Importance of each predictor

Measuring importance of each predictor

Because bagging-of-trees and random forests are poorly interpretable compared to classification trees, the following is useful.

The **importance,** v_i **say, of the** *j***th predictor** is measured as follows.

For each tree (i.e., for any $b = 1, ..., B$),

- the prediction error on OOB observations is recorded, and
- the same is done after permuting randomly all values of the *j*th predictor (which essentially turns this predictor into noise), the **difference between both errors** is then averaged over $b = 1, \ldots, B$ (and normalized by the standard error—if it is positive), yielding v_j .

(A similar measure is used for regression, based on MSEs).

Measuring importance of each predictor

Figure 1

Figure 2: Importance of each predictor (decreasing order)