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What can be improved?

Averaging reduces variability. . .

• We argued that bagging of trees will work because averaging reduces variability: if U1, . . . ,Un are uncorrelated
with variance σ2, then

Var[Ū ] = σ2

n
·

• However, the B trees that are ‘averaged’ in bagging are not uncorrelated! This will result into a smaller
reduction of the variability.

• Random forests have the flavour of bagging-of-trees, but they incorporate a modification that aims at
decorrelating the trees.

The procedure

Random forests

• Like bagging-of-trees, random forests predict via majority voting from classification trees trained on B
bootstrap samples.

• However, whenever a split is designed in each tree, the split is only allowed among m(<< p) predictors
randomly selected out of the p predictors.

• The rationale: in a situation where there would be one strong predictor only, most bagged trees would use
this predictor in the top split, which would result in highly correlated trees. The tweak above will prevent this,
hence will lead to less correlated trees.

Random forests

Using m = p would simply provide bagging-of-trees. Using m small is appropriate when there are many correlated
predictors. Common practice:

• For classification (where majority voting is used), m ≈p
p.

• For regression (where tree predictions are averaged), m ≈ p
3 .

In both cases, results are actually not very sensitive to m.
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Random forests

Random forests

⊠ are nonparametric and efficient
⊠ can deal with a large number of predictors (high dimension)
⊠ can cope with both small and large sample sizes (Big Data)

but they

□ rely on a rather black box model, and
□ are not supported by strong theoretical results

A simulation

Let us look at efficiency. . .

We repeated M = 1000 times the following experiment:

(1) Split the channing data set into a training set (of size 300) and a test set (of size 162);
(2) (a) train a classification tree on the training set and evaluate its test error (i.e., misclassification rate) on the test

set;
(b) do the same with a bagging classifier using B = 500 trees;
(c) do the same with a random forest classifier using the randomForest function in Rwith default parameters

(B = 500 trees, m ≈p
p).

This provided M = 1000 test errors for the direct (single-tree) approach, M = 1000 test errors for the bagging
approach, and M = 1000 test errors for the random forest approach.

A simulation

Importance of each predictor

Measuring importance of each predictor

Because bagging-of-trees and random forests are poorly interpretable compared to classification trees, the following
is useful.

The importance, v j say, of the j th predictor is measured as follows.

For each tree (i.e., for any b = 1, . . . ,B),

• the prediction error on OOB observations is recorded, and
• the same is done after permuting randomly all values of the j th predictor (which essentially turns this

predictor into noise), the difference between both errors is then averaged over b = 1, . . . ,B (and normalized
by the standard error—if it is positive), yielding v j .

(A similar measure is used for regression, based on MSEs).

Measuring importance of each predictor
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Figure 1
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Figure 2: Importance of each predictor (decreasing order)
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