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1. Bootstrap



1. Bootstrap

Efron (1979)
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1. Bootstrap

1.1 Introduction



1.1 Introduction

Let X1, . . . , Xn ∼ Pθ i.i.d. Let θ̂ = θ̂(X1, . . . , Xn) be an estimator for θ.

One often wants to evaluate the variance Var[θ̂] to quantify the
uncertainty of θ̂.

The bootstrap is a powerful, broadly applicable method:

to estimate the variance Var[θ̂]
to estimate the bias E[θ̂] − θ
to construct confidence intervals for θ
more generally, to estimate the distribution of θ̂.

The method is nonparametric and can deal with small n.
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1. Bootstrap

1.2 A motivating example



1.2 A motivating example

James et al. (2021)
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Optimal portfolio

Let Y and Z be the values of two random assets and consider the
portfolio:

Wλ = λY + (1 − λ)Z , λ ∈ [0, 1]

allocating a proportion λ of your wealth to Y and a proportion
1 − λ to Z .
A common, risk-averse, strategy is to minimize the risk Var[Wλ].
It can be shown that this risk is minimized at

λopt = Var[Z ] − Cov[Y , Z ]
Var[Y ] + Var[Z ] − 2 Cov[Y , Z ]

But in practice, Var[Y ], Var[Z ] and Cov[Y , Z ] are unknown.
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Sample case

Now, if historical data X1 = (Y1, Z1), . . . , Xn = (Yn, Zn) are available,
then we can estimate λopt by

λ̂opt = V̂ar[Y ] − ̂Cov[Y , Z ]
V̂ar[Y ] + V̂ar[Z ] − 2 ̂Cov[Y , Z ]

where

V̂ar[Y ] is the sample variance of the Yi ’s
V̂ar[Z ] is the sample variance of the Zi ’s
̂Cov[Y , Z ] is the sample covariance of the Yi ’s and Zi ’s.
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How to estimate the accuracy of λ̂opt?

. . . i.e., its standard deviation
Std[λ̂opt]?
Using the available sample, we
observe λ̂opt only once.
We need further samples leading to
further observations of λ̂opt.
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Figure 1: Portfolio data. For
this sample, λ̂opt = 0.283
(James et al. 2021).
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Sampling from the population: infeasible

We generated 1000 samples from the population. The first three are
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Figure 2: λ̂
(1)
opt = 0.283, λ̂

(2)
opt = 0.357, λ̂

(3)
opt = 0.299 (James et al. 2021).

This allows us to compute: λ̄opt = 1
1000

∑1000
i=1 λ̂

(i)
opt

Then: ̂Std[λ̂opt] =
√

1
999

∑1000
i=1 (λ̂(i)

opt − λ̄opt)2.
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Here:

̂Std[λ̂opt] ≈ 0.077, λ̄opt ≈ 0.331 (≈ λopt = 1
3 = 0.333)
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Figure 3: Histogram and boxplot of the empirical distribution of the λ̂
(i)
opt

(James et al. 2021).

(This could also be used to estimate quantiles of λ̂opt.)
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Sampling from the sample: the bootstrap

It is important to realize that this cannot be done in practice.
One cannot sample from the population Pθ since it is unknown.
However, one may sample instead from the empirical distribution
Pn (i.e., the uniform distribution over (X1, . . . , Xn)), that is close
to Pθ for large n.
This means that we sample with replacement from (X1, . . . , Xn),
providing a first bootstrap sample (X ∗1

1 , . . . , X ∗1
n ) which allows

us to evaluate λ̂
∗(1)
opt .

Further generating bootstrap samples (X ∗b
1 , . . . , X ∗b

n ),
b = 2, . . . , B = 1000, one can compute

̂Std[λ̂opt]
∗

=

√√√√ 1
B − 1

B∑
b=1

(λ̂∗(b)
opt − λ̄∗

opt)2

with

λ̄∗
opt = 1

1000

B∑
b=1

λ̂
∗(b)
opt
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This provides
̂Std[λ̂opt]

∗
≈ 0.079
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Figure 4: Histogram and boxplot of the bootstrap distribution of λ̂opt (James
et al. 2021).

(This could again be used to estimate quantiles of λ̂opt.)
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A comparison between both samplings

Results are close: ̂Std[λ̂opt] ≈ 0.077 and ̂Std[λ̂opt]
∗

≈ 0.079.
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Figure 5: Bootstrap distributions from portfolio data (James et al. 2021).
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1. Bootstrap

1.3 The general procedure



The bootstrap

Let X1, . . . , Xn be i.i.d ∼ Pθ.
Let T = T (X1, . . . , Xn) be a statistic of interest.
The bootstrap allows us to say something about the distribution
of T :

(X ∗1
1 , . . . , X ∗1

n ) ⇝ T ∗1 = T (X ∗1
1 , . . . , X ∗1

n )
...

(X ∗b
1 , . . . , X ∗b

n ) ⇝ T ∗b = T (X ∗b
1 , . . . , X ∗b

n )
...

(X ∗B
1 , . . . , X ∗B

n ) ⇝ T ∗B = T (X ∗B
1 , . . . , X ∗B

n )

Under mild conditions, the empirical distribution of
(T ∗1, . . . , T ∗B) provides a good approximation of the sampling
distribution of T under Pθ.
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Above, each bootstrap sample (X ∗b
1 , . . . , X ∗b

n ) is obtained by sampling
(uniformly) with replacement among the original sample
(X1, . . . , Xn).

Possible uses:
1

B−1
∑B

b=1(T ∗b − T̄ ∗)2, with T̄ ∗ = 1
B

∑B
b=1 T ∗b, estimates

Var[T]
The sample α-quantile q∗

α of (T ∗1, . . . , T ∗B) estimates T ’s
α-quantile

Possible uses when T is an estimator of θ:

( 1
B

∑B
b=1 T ∗b) − T estimates the bias E[T ] − θ of T

[q∗
α/2, q∗

1−(α/2)] is an approximate (1 − α)-confidence interval
for θ.
. . .
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1. Bootstrap

1.4 About the implementation in R



A toy illustration

Let X1, . . . , Xn (n = 4) be i.i.d t-distributed with 6 degrees of
freedom.
Let X̄ = 1

n
∑n

i=1 Xi be the sample mean.
How to estimate the variance of X̄ through the bootstrap?

n <- 4
(X <- rt(n,df=6))

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

Xbar <- mean(X)
Xbar

[1] 0.0344589
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Obtaining a bootstrap sample

X

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

d <- sample(1:n,n,replace=TRUE)
d

[1] 2 4 4 4

Xstar <- X[d]
Xstar

[1] 0.2804408 -1.2521279 -1.2521279 -1.2521279
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Generating B = 1000 bootstrap means

B <- 1000
Bootmeans <- vector(length = B)
for (b in (1:B)) {

d <- sample(1:n, n, replace = TRUE)
Bootmeans[b] <- mean(X[d])

}
Bootmeans[1:4]

[1] 0.2370868 -0.3486833 0.3521335 0.2370868
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Bootstrap estimates

Bootstrap estimates of E[X̄ ] and Var[X̄ ] are then given by
mean(Bootmeans)

[1] 0.03679914

var(Bootmeans)

[1] 0.1789107

The practical sessions will explore how well such estimates behave.
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The boot function

A better strategy is to use the boot function from
library(boot)

The boot function takes typically 3 arguments:

data: the original sample
statistic: a user-defined function with the statistic to
bootstrap
▶ 1st argument: a generic sample
▶ 2nd argument: a vector of indices pointing to a subsample on

which the statistic is to be evaluated. . .
R: the number B of bootstrap samples to consider
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If the statistic is the mean, then a suitable user-defined function is
boot.mean <- function(x,d) {

mean(x[d])
}

The bootstrap estimate of Var[X̄ ] is then
res.boot <- boot(X,boot.mean,R=1000)
var(res.boot$t)

[,1]
[1,] 0.1844024
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2. Bagging

Breiman (1996)
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2. Bagging

2.1 Introduction



2.1 Introduction

The bootstrap has other uses than those described above.

In particular, it allows us to design ensemble methods in
statistical learning.

Bagging (Bootstrap Aggregating), which is the most famous
approach in this direction, can be applied to both regression and
classification.

Below, we mainly focus on bagging of classification trees, but it
should be clear that bagging of regression trees can be performed
similarly.
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2. Bagging

2.2 Classification trees



2.2 Classification trees

Breiman et al. (1984)
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The classification problem

In classification, one observes (Xi , Yi), i = 1, . . . , n, where
▶ Xi collects the values of p predictors on individual i , and
▶ Yi ∈ {1, 2, . . . , K} is the class to which individual i belongs.

The problem is to classify a new observation for which we only see
x , that is, to bet on the corresponding value y ∈ {1, 2, . . . , K}.
A classifier is a mapping

ϕS : X → {1, 2, . . . , K}

x 7→ ϕS(x),

that is designed using the sample S = {(Xi , Yi), i = 1, . . . , n}.
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library(boot)
data(channing)
channing <- channing[,c("sex","entry","time","cens")]
channing[1:4,]

sex entry time cens
1 Male 782 127 1
2 Male 1020 108 1
3 Male 856 113 1
4 Male 915 42 1

Predict sex ∈ {Male, Female} on the basis of two numerical predictors
(entry, time) and a binary one (cens).
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Classification trees

In Part 1 of this course, we learned about a special type of classifiers
ϕS , namely classification trees.
library(rpart)
library(rpart.plot)
fitted.tree <- rpart(sex~., data=channing, method="class")
rpart.plot(fitted.tree)
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The process of averaging will reduce variability, hence, improve
stability. Recall indeed that, if U1, . . . , Un are uncorrelated with
variance σ2, then

Var[Ū] = σ2

n ·

Since unpruned trees have low bias (but high variance), this reduced
variance will lead to a low value of

MSE = Var + (Bias)2

which will ensure a good performance.

How to perform this averaging?
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2. Bagging

2.3 Bagging of classification trees



Bagging

Denote as ϕS(x) the predicted class for predictor value x returned by
the classification tree associated with sample
S = {(Xi , Yi), i = 1, . . . , n}.

Bagging of this tree considers predictions from B bootstrap samples

S∗1 = ((X ∗1
1 , Y ∗1

1 ), . . . , (X ∗1
n , Y ∗1

n )) ⇝ ϕS∗1(x)
...

...
S∗b = ((X ∗b

1 , Y ∗b
1 ), . . . , (X ∗b

n , Y ∗b
n )) ⇝ ϕS∗b (x)

...
...

S∗B = ((X ∗B
1 , Y ∗B

1 ), . . . , (X ∗B
n , Y ∗B

n )) ⇝ ϕS∗B (x)

then proceeds by majority voting (i.e., the most frequently predicted
class wins):

ϕBagging
S (x) = argmax

k∈{1,...,K}
#{b : ϕS∗b (x) = k}
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Toy illustration: bagging with B = 3 trees

d=sample(1:n,n,replace=TRUE)
fitted.tree <- rpart(sex~.,data=channing[d,],method="class")
rpart.plot(fitted.tree)
predict(fitted.tree, channing[1,], type="class")
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d=sample(1:n,n,replace=TRUE)
fitted.tree <- rpart(sex~.,data=channing[d,],method="class")
rpart.plot(fitted.tree)
predict(fitted.tree, channing[1,], type="class")

cens < 0.5

entry < 843

entry < 952

time >= 96

time < 23

entry >= 784

time < 105

time >= 37

time < 69

entry < 912

entry >= 946

time < 33

time >= 109

Female
0.18
100%

Female
0.14
63%

Female
0.04
17%

Female
0.18
46%

Female
0.15
34%

Female
0.26
11%

Female
0.06
4%

Female
0.36
8%

Female
0.18
5%

Male
0.64
3%

Female
0.25
37%

Female
0.23
35%

Female
0.19
25%

Female
0.14
18%

Female
0.05
9%

Female
0.24
8%

Female
0.00
3%

Female
0.35
6%

Female
0.12
4%

Male
0.78
2%

Female
0.31
8%

Female
0.19
6%

Male
0.75
2%

Female
0.33
10%

Female
0.24
9%

Male
0.86
2%

Male
0.71
2%

yes no

entry=782
time=127
cens=1

⇓
Male

29 47



d=sample(1:n,n,replace=TRUE)
fitted.tree <- rpart(sex~.,data=channing[d,],method="class")
rpart.plot(fitted.tree)
predict(fitted.tree, channing[1,], type="class")
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For x = (entry,time,cens) = (782,127,1),

two (out of the B = 3 trees) voted for Male
one (out of the B = 3 trees) voted for Female, the bagging
classifier will thus classify x into Male.

Of course, B is usually much larger (B = 500? B = 1000?), which
requires automating the process (through, e.g., the boot function).
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2. Bagging

2.4 How much do you gain?



A simulation

We repeat M = 1000 times the following experiment:

(1) Split the data set into a training set (of size 300) and a test set
(of size 162);

(2) (a) train a classification tree on the training set and evaluate its test
error (i.e., misclassification rate) on the test set;

(b) do the same with a bagging classifier using B = 500 trees.

This provides M = 1000 test errors for the direct (single-tree)
approach, and M = 1000 test errors for the bagging approach.
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Figure 6: Results of the simulation (Q-Q plot and boxplot).
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2. Bagging

2.5 Estimating the prediction accuracy



Estimating the prediction (lack of)
accuracy

Several strategies to estimate prediction accuracy of a classifier:

(1) Compute a test error (as above): Partition the data set S into a
training set Strain (to train the classifier) and a test set Stest (on which
to evaluate the misclassification rate etest).
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(2) Compute an L-fold cross-validation error:

Partition the data set S into L folds Sℓ, ℓ = 1, . . . , L. For each ℓ,
evaluate the test error etest,ℓ associated with training set S \ Sℓ and
test set Sℓ.

Figure 7

The quantity

eCV = 1
L

L∑
ℓ=1

etest,ℓ

is then the (L-fold) ‘cross-validation error’.
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(3) Compute the Out-Of-Bag (OOB) error1:

For each observation Xi from S, define the OOB prediction as

ϕOOB
S (Xi) = argmax

k∈{1,...,K}
#{b : ϕS∗b (Xi) = k and (Xi , Yi) /∈ S∗b}

This is a majority voting discarding, quite naturally, bootstrap samples
that use (Xi , Yi) to train the classification tree. The OOB error is then
the corresponding misclassification rate

eOOB = 1
n

n∑
i=1

⊮[ϕOOB
S (Xi) ̸= Yi ]

1This is for bagging procedures only.
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Final remarks

Bagging of trees can also be used for regression. The only
difference is that majority voting is then replaced with an
averaging of individual predicted responses.
Bagging is a general device that applies to other types of
classifiers. In particular, it can be applied to kNN classifiers (we
will illustrate this in the practical sessions).
Bagging affects interpretability of classification trees. There
are, however, solutions that intend to measure importance of the
various predictors (see the next section).
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3. Random forests



3. Random forests

Ho (1995)
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3. Random forests

3.1 What can be improved?



Averaging reduces variability. . .

We argued that bagging of trees will work because averaging
reduces variability: if U1, . . . , Un are uncorrelated with variance σ2,
then

Var[Ū] = σ2

n ·

However, the B trees that are ‘averaged’ in bagging are not
uncorrelated! This will result into a smaller reduction of the
variability.
Random forests have the flavour of bagging-of-trees, but they
incorporate a modification that aims at decorrelating the trees.
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3. Random forests

3.2 The procedure



Like bagging-of-trees, random forests predict via majority voting
from classification trees trained on B bootstrap samples.
However, whenever a split is designed in each tree, the split
is only allowed among m(≪ p) predictors randomly selected
out of the p predictors.
The rationale: in a situation where there would be one strong
predictor only, most bagged trees would use this predictor in the
top split, which would result in highly correlated trees. The tweak
above will prevent this, hence will lead to less correlated trees.
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Choosing the number of features

Using m = p would simply provide bagging-of-trees. Using m small is
appropriate when there are many correlated predictors. Common
practice:

For classification (where majority voting is used), m ≈ √p.
For regression (where tree predictions are averaged), m ≈ p

3 .

In both cases, results are actually not very sensitive to m.
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Random forests

⊠ are nonparametric and efficient
⊠ can deal with a large number of predictors (high dimension)
⊠ can cope with both small and large sample sizes (Big Data)

but they

□ rely on a rather black box model, and
□ are not supported by strong theoretical results
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3. Random forests

3.3 A simulation



Let us look at efficiency. . .

We repeated M = 1000 times the following experiment:

(1) Split the channing data set into a training set (of size 300) and a
test set (of size 162);

(2) (a) train a classification tree on the training set and evaluate its test
error (i.e., misclassification rate) on the test set;

(b) do the same with a bagging classifier using B = 500 trees;
(c) do the same with a random forest classifier using the

randomForest function in R with default parameters (B = 500
trees, m ≈ √p).

This provided M = 1000 test errors for the direct (single-tree)
approach, M = 1000 test errors for the bagging approach, and
M = 1000 test errors for the random forest approach.
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The results
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Figure 8: Comparison of single tree, bagging and random forest errors
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3. Random forests

3.4 Importance of each predictor



Measuring importance of each predictor

Because bagging-of-trees and random forests are poorly interpretable
compared to classification trees, the following is useful.

The importance vj of the jth predictor is measured as follows.

For each tree (i.e., for any b = 1, . . . , B),

the prediction error on OOB observations is recorded, and
the same is done after permuting randomly all values of the jth
predictor (which essentially turns this predictor into noise), the
difference between both errors is then averaged over
b = 1, . . . , B (and normalized by the standard error—if it is
positive), yielding vj .

(A similar measure is used for regression, based on MSEs).
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Measuring importance of each predictor
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Figure 9: Importance of each predictor (decreasing order)
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