High-Dimensional Data Analysis and Machine Learning

From a course by [Davy Paindaveine](https://davy.paindaveine.web.ulb.be) and [Nathalie Vialaneix](https://nathalievialaneix.eu)

Camille Mondon

LAST UPDATED ON OCTOBER 1, 2024

1. Bootstrap

1. BOOTSTRAP

Efron [\(1979\)](#page-63-0)

1. Bootstrap

[1.1 Introduction](#page-3-0)

Let $X_1, \ldots, X_n \sim P_\theta$ i.i.d. Let $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ be an estimator for θ . One often wants to evaluate the **variance** Var[*θ*ˆ] to quantify the uncertainty of $\hat{\theta}$.

The bootstrap is a powerful, broadly applicable method:

- to estimate the **variance** Var[$\hat{\theta}$]
- **■** to estimate the **bias** $\mathbb{E}[\hat{\theta}] \theta$
- to construct **confidence intervals** for *θ*
- **more generally, to estimate the distribution of** $\hat{\theta}$ **.**

The method is **nonparametric** and can deal with small n.

1. Bootstrap

[1.2 A motivating example](#page-5-0)

James et al. [\(2021\)](#page-64-0)

 \blacksquare Let Y and Z be the values of two random assets and consider the **portfolio**:

$$
W_{\lambda} = \lambda Y + (1 - \lambda)Z, \qquad \lambda \in [0, 1]
$$

allocating a proportion λ of your wealth to Y and a proportion $1 - \lambda$ to Z.

A common, risk-averse, strategy is to minimize the **risk** $Var[W_{\lambda}]$. \blacksquare It can be shown that this risk is minimized at

$$
\lambda_{\text{opt}} = \frac{\text{Var}[Z] - \text{Cov}[Y, Z]}{\text{Var}[Y] + \text{Var}[Z] - 2\text{Cov}[Y, Z]}
$$

But in practice, $Var[Y]$, $Var[Z]$ and $Cov[Y, Z]$ are *unknown*.

Now, if **historical data** $X_1 = (Y_1, Z_1), \ldots, X_n = (Y_n, Z_n)$ are available, then we can estimate λ_{opt} by

$$
\hat{\lambda}_{\text{opt}} = \frac{\widehat{\text{Var}[Y]} - \widehat{\text{Cov}[Y,Z]}}{\widehat{\text{Var}[Y]} + \widehat{\text{Var}[Z]} - 2\widehat{\text{Cov}[Y,Z]}}
$$

where

 \blacksquare Var $[Y]$ is the sample variance of the Y_i 's \blacksquare Var[Z] is the sample variance of the Z_i 's Cov $[Y, Z]$ is the sample covariance of the Y_i 's and Z_i 's.

How to estimate the accuracy of $\hat{\lambda}_{\text{OPT}}$?

- *. . .* i.e., its standard deviation $\mathsf{Std}[\hat{\lambda}_{\mathsf{opt}}]$?
- **Using the available sample, we** observe *λ*ˆ opt **only once**.
- We need further samples leading to further observations of $\hat{\lambda}_{\mathsf{opt}}.$

Figure 1: Portfolio data. For this sample, $\hat{\lambda}_{\text{opt}} = 0.283$ (James et al. [2021\)](#page-64-0).

SAMPLING FROM THE POPULATION: INFEASIBLE

We generated 1000 samples from the population. The first three are

Figure 2: $\hat{\lambda}_{opt}^{(1)} = 0.283$, $\hat{\lambda}_{opt}^{(2)} = 0.357$, $\hat{\lambda}_{opt}^{(3)} = 0.299$ (James et al. [2021\)](#page-64-0).

This allows us to compute: $\bar{\lambda}_{\text{opt}} = \frac{1}{100}$ $\frac{1}{1000}\sum_{i=1}^{1000}\hat{\lambda}_{\mathsf{op}}^{(i)}$ opt Then: $\widehat{\text{Std}[\hat{\lambda}_{\text{opt}}]} = \sqrt{\frac{1}{99}}$ $\frac{1}{999} \sum_{i=1}^{1000} (\hat{\lambda}_{\text{opt}}^{(i)} - \bar{\lambda}_{\text{opt}})^2$.

Here:

$$
\widehat{\mathsf{Std}[\hat{\lambda}_{\mathsf{opt}}]} \approx 0.077, \qquad \bar{\lambda}_{\mathsf{opt}} \approx 0.331 \;\; (\approx \lambda_{\mathsf{opt}} = \frac{1}{3} = 0.333)
$$

Figure 3: Histogram and boxplot of the empirical distribution of the $\hat{\lambda}_{\text{opt}}^{(i)}$ (James et al. [2021\)](#page-64-0).

(This could also be used to estimate quantiles of $\hat{\lambda}_{\mathsf{opt}}$.)

SAMPLING FROM THE SAMPLE: THE BOOTSTRAP

- It is important to realize that **this cannot be done in practice**. One cannot sample from the population P*^θ* since it is **unknown**.
- **However, one may sample instead from the empirical distribution** P_n (i.e., the uniform distribution over (X_1, \ldots, X_n)), that is close to P*^θ* for large n.
- **This means that we sample with replacement from** (X_1, \ldots, X_n) **,** providing a first **bootstrap sample** $(X_1^{*1},...,X_n^{*1})$ which allows us to evaluate $\hat{\lambda}_{\mathsf{opt}}^{*(1)}.$
- Further generating bootstrap samples $(X_1^{*b},...,X_n^{*b})$, $b = 2, \ldots, B = 1000$, one can compute

$$
\widehat{\text{Std}[\hat{\lambda}_{\text{opt}}]}^* = \sqrt{\frac{1}{B-1} \sum_{b=1}^B (\hat{\lambda}_{\text{opt}}^{*(b)} - \bar{\lambda}_{\text{opt}}^*)^2}
$$

with

$$
\bar{\lambda}_{\mathsf{opt}}^* = \frac{1}{1000} \sum_{b=1}^B \hat{\lambda}_{\mathsf{opt}}^{*(b)} \qquad \qquad \sum_{\mathsf{end}}^{\text{Toulouse}} \sum_{\mathsf{E}_{\mathsf{binomial}}}^{\text{Toulouse}}
$$

This provides

Std[$\widehat{\lambda}_{\text{opt}}$] ∗ ≈ 0.079

Figure 4: Histogram and boxplot of the bootstrap distribution of $\hat{\lambda}_{\text{opt}}$ (James et al. [2021\)](#page-64-0).

(This could again be used to estimate quantiles of $\hat{\lambda}_{\mathsf{opt}}$.)

A COMPARISON BETWEEN BOTH SAMPLINGS

 $\text{Results are close: } \widehat{\mathrm{Std}[\hat{\lambda}_{\mathrm{opt}}]} \approx 0.077$ and $\widehat{\mathrm{Std}[\hat{\lambda}_{\mathrm{opt}}]}$ ∗ ≈ 0.079 .

Figure 5: Bootstrap distributions from portfolio data (James et al. 20²5)

1. Bootstrap

[1.3 The general procedure](#page-15-0)

THE BOOTSTRAP

- **■** Let X_1, \ldots, X_n be i.i.d $\sim P_\theta$.
- Let $T = T(X_1, \ldots, X_n)$ be a **statistic** of interest.
- **The bootstrap** allows us to say something about the distribution of T:

$$
(X_1^{*1}, \dots, X_n^{*1}) \rightsquigarrow T^{*1} = T(X_1^{*1}, \dots, X_n^{*1})
$$

\n
$$
\vdots
$$

\n
$$
(X_1^{*b}, \dots, X_n^{*b}) \rightsquigarrow T^{*b} = T(X_1^{*b}, \dots, X_n^{*b})
$$

\n
$$
\vdots
$$

\n
$$
(X_1^{*B}, \dots, X_n^{*B}) \rightsquigarrow T^{*B} = T(X_1^{*B}, \dots, X_n^{*B})
$$

Under mild conditions, the empirical distribution of (T^{∗1},...,T^{∗B}) provides a **good approximation** of the sam<mark>pl</mark>ing distribution of T under P_θ.

Above, each bootstrap sample $(X_1^{*b},...,X_n^{*b})$ is obtained by **sampling (uniformly) with replacement** among the original sample (X_1, \ldots, X_n) .

Possible uses:

. . .

$$
\blacksquare \frac{1}{B-1} \sum_{b=1}^{B} (T^{*b} - \overline{T}^{*})^{2}, \text{ with } \overline{T}^{*} = \frac{1}{B} \sum_{b=1}^{B} T^{*b}, \text{ estimates}
$$
\n
$$
\text{Var}[\mathbf{T}]
$$

The sample α -quantile \pmb{q}^*_α of $(\,\mathcal{T}^{*1},\ldots,\,\mathcal{T}^{*B})$ estimates $\,\mathcal{T}$ **'s** *α***-quantile**

Possible uses when T is an **estimator** of *θ*:

\n- \n
$$
(\frac{1}{B} \sum_{b=1}^{B} T^{*b}) - T
$$
 estimates the bias $\mathbb{E}[T] - \theta$ of T \n
\n- \n $[q^*_{\alpha/2}, q^*_{1-(\alpha/2)}]$ is an approximate $(1 - \alpha)$ -confidence interval for θ .\n
\n

1. Bootstrap

[1.4 About the implementation in R](#page-18-0)

A TOY ILLUSTRATION

Let X_1, \ldots, X_n ($n = 4$) be i.i.d t-distributed with 6 degrees of freedom.

Let $\bar{X} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^{n} X_i$ be the sample mean.

How to estimate the variance of \overline{X} through the bootstrap?

```
n \le -4(X \leq -rt(n, df=6))[1] -0.08058779 0.28044078 1.19011050 -1.25212790
Xbar \leftarrow mean(X)Xbar
```
[1] 0.0344589

OBTAINING A BOOTSTRAP SAMPLE

```
X
[1] -0.08058779 0.28044078 1.19011050 -1.25212790
d <- sample(1:n,n,replace=TRUE)
d
[1] 2 4 4 4
Xstar \leftarrow X[d]Xstar
```
[1] 0.2804408 -1.2521279 -1.2521279 -1.2521279


```
B < -1000Bootmeans \leq vector(length = B)
for (b in (1:B)) {
  d \leq - sample(1:n, n, replace = TRUE)
  Bootmeans [b] \leftarrow mean(X[d])}
Bootmeans[1:4]
```
[1] 0.2370868 -0.3486833 0.3521335 0.2370868

Bootstrap estimates of $\mathbb{E}[\bar{X}]$ and $\text{Var}[\bar{X}]$ are then given by

mean(Bootmeans)

[1] 0.03679914

var(Bootmeans)

[1] 0.1789107

The practical sessions will explore how well such estimates behave.

A better strategy is to use the boot function from

library(boot)

The boot function takes typically 3 arguments:

- data: the original sample
- statistic: a **user-defined function** with the statistic to bootstrap
	- ▶ 1st argument: a generic sample
	- ▶ 2nd argument: a vector of indices pointing to a subsample on which the statistic is to be evaluated...
- R: the number B of bootstrap samples to consider

If the statistic is the mean, then a suitable **user-defined function** is

```
boot.mean \leq function(x,d) {
  mean(x[d])}
```

```
The bootstrap estimate of Var[\bar{X}] is then
res.boot \leq boot(X, \text{boot} \dots \text{mean}, R=1000)var(res.boot$t)
```

```
[,1]
[1,] 0.1844024
```


Breiman [\(1996\)](#page-63-1)

[2.1 Introduction](#page-27-0)

- The bootstrap has other uses than those described above.
- **If** In particular, it allows us to design **ensemble methods** in **statistical learning**.
- **Bagging** (**B**ootstrap **Agg**regat**ing**), which is the most famous approach in this direction, can be applied to both **regression** and **classification**.
- Below, we mainly focus on **bagging of classification trees**, but it \blacksquare should be clear that bagging of regression trees can be performed similarly.

[2.2 Classification trees](#page-29-0)

Breiman et al. [\(1984\)](#page-63-2)

In classification, one observes (X_i, Y_i) , $i = 1, \ldots, n$, where

 \blacktriangleright X_i collects the values of p predictors on individual i, and

▶ $Y_i \in \{1, 2, ..., K\}$ is the class to which individual *i* belongs.

■ The problem is to classify a new observation for which we only see x, that is, to bet on the corresponding value $y \in \{1, 2, ..., K\}$. A classifier is a mapping

$$
\begin{array}{rcl} \phi_{\mathcal{S}} : \mathcal{X} & \rightarrow & \{1, 2, \dots, K\} \\ x & \mapsto & \phi_{\mathcal{S}}(x), \end{array}
$$

that is designed using the sample $\mathcal{S} = \{ (X_i, \, Y_i), \,\, i = 1, \ldots, n \}.$

```
library(boot)
data(channing)
channing <- channing[,c("sex","entry","time","cens")]
changing[1:4]
```


Predict sex \in {Male, Female} on the basis of two numerical predictors (entry, time) and a binary one (cens).

In Part 1 of this course, we learned about a special type of classifiers $\phi_{\mathcal{S}}$, namely classification trees.

```
library(rpart)
library(rpart.plot)
fitted.tree <- rpart(sex~., data=channing, method="class")
rpart.plot(fitted.tree)
```


(+) Interpretability **(+)** Flexibility **(–)** Stability **(–)** Performance

The process of **averaging** will reduce variability, hence, **improve stability**. Recall indeed that, if U_1, \ldots, U_n are uncorrelated with variance σ^2 , then

$$
\mathsf{Var}[\bar{U}] = \frac{\sigma^2}{n}.
$$

Since unpruned trees have low bias (but high variance), this reduced variance will lead to a low value of

$$
MSE = Var + (Bias)^2
$$

which will ensure a **good performance**.

How to perform this **averaging**?

[2.3 Bagging of classification trees](#page-35-0)

BAGGING

Denote as $\phi_{\mathcal{S}}(x)$ the predicted class for predictor value x returned by the classification tree associated with sample $S = \{ (X_i, Y_i), i = 1, \ldots, n \}.$

Bagging of this tree considers predictions from B bootstrap samples

$$
S^{*1} = ((X_1^{*1}, Y_1^{*1}), \dots, (X_n^{*1}, Y_n^{*1})) \rightsquigarrow \phi_{S^{*1}}(x)
$$

\n:
\n
$$
S^{*b} = ((X_1^{*b}, Y_1^{*b}), \dots, (X_n^{*b}, Y_n^{*b})) \rightsquigarrow \phi_{S^{*b}}(x)
$$

\n:
\n:
\n
$$
S^{*b} = ((X_1^{*b}, Y_1^{*b}), \dots, (X_n^{*b}, Y_n^{*b})) \rightsquigarrow \phi_{S^{*b}}(x)
$$

then proceeds by **majority voting** (i.e., the most frequently predicted class wins):

$$
\phi_{\mathcal{S}}^{\text{Bagging}}(x) = \underset{k \in \{1,\ldots,K\}}{\text{argmax}} \# \{b : \phi_{\mathcal{S}^{*b}}(x) = k\}
$$

TOY ILLUSTRATION: BAGGING WITH $\overline{B} = 3$ TREES

d=sample(1:n,n,replace=TRUE) fitted.tree <- rpart(sex~.,data=channing[d,],method="class") rpart.plot(fitted.tree) predict(fitted.tree, channing[1,], type="class")

entry=782 time=127 $cens=1$ ⇓ Female

d=sample(1:n,n,replace=TRUE) fitted.tree <- rpart(sex~.,data=channing[d,],method="class") rpart.plot(fitted.tree) predict(fitted.tree, channing[1,], type="class")

entry=782 time=127 cens=1 ⇓ Male

d=sample(1:n,n,replace=TRUE) fitted.tree <- rpart(sex~.,data=channing[d,],method="class") rpart.plot(fitted.tree) predict(fitted.tree, channing[1,], type="class")

entry=782 time=127 cens=1 ⇓ Male

For $x = ($ entry,time,cens $) = (782, 127, 1)$,

- **two** (out of the $B = 3$ trees) **voted for Male**
- **one** (out of the $B = 3$ trees) **voted for Female**, the bagging classifier will thus classify x into **Male**.

Of course, B is usually much larger ($B = 500$? $B = 1000$?), which requires automating the process (through, e.g., the boot function).

[2.4 How much do you gain?](#page-41-0)

We repeat $M = 1000$ times the following experiment:

- (1) Split the data set into a training set (of size 300) and a test set (of size 162);
- (2) (a) **train** a classification tree on the training set and evaluate its **test** error (i.e., misclassification rate) on the test set;
	- (b) do the same with a bagging classifier using $B = 500$ trees.

This provides $M = 1000$ test errors for the **direct** (single-tree) approach, and $M = 1000$ test errors for the **bagging** approach.

Figure 6: Results of the simulation (Q-Q plot and boxplot).

[2.5 Estimating the prediction accuracy](#page-44-0)

ESTIMATING THE PREDICTION (LACK OF **ACCURACY**

Several strategies to estimate prediction accuracy of a classifier:

(1) Compute a test error (as above): Partition the data set S into a training set S_{train} (to train the classifier) and a test set S_{test} (on which to evaluate the misclassification rate e_{test}).

(2) Compute an L**-fold cross-validation error**:

Partition the data set S into L folds S_{ℓ} , $\ell = 1, \ldots, L$. For each ℓ , evaluate the test error $e_{\text{test}, \ell}$ associated with training set $S \setminus S_{\ell}$ and test set S*^ℓ* .

Figure 7

The quantity

$$
e_{CV} = \frac{1}{L} \sum_{\ell=1}^L e_{\text{test},\ell}
$$

is then the (L-fold) 'cross-validation error'.

(3) Compute the Out-Of-Bag (OOB) error¹ :

For each observation X_i from S, define the OOB prediction as

$$
\phi_{\mathcal{S}}^{\text{OOB}}(X_i) = \underset{k \in \{1,\ldots,K\}}{\text{argmax}} \# \{b : \phi_{\mathcal{S}^{*b}}(X_i) = k \text{ and } (X_i, Y_i) \notin \mathcal{S}^{*b}\}
$$

This is a **majority voting** discarding, quite naturally, bootstrap samples that use (X_i,Y_i) to train the classification tree. The OOB error is then the corresponding misclassification rate

$$
e_{\text{OOB}} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left[\phi_{\mathcal{S}}^{\text{OOB}}(X_i) \neq Y_i \right]
$$

¹This is for bagging procedures only.

- **Bagging of trees can also be used for regression**. The only difference is that majority voting is then replaced with an averaging of individual predicted responses.
- **Bagging is a general device that applies to other types of classifiers**. In particular, it can be applied to kNN classifiers (we will illustrate this in the practical sessions).
- **Bagging affects interpretability of classification trees**. There are, however, solutions that intend to measure importance of the various predictors (see the next section).

Ho [\(1995\)](#page-63-3)

[3.1 What can be improved?](#page-51-0)

We argued that bagging of trees will work because **averaging** reduces variability: if U_1,\ldots,U_n are uncorrelated with variance σ^2 , then

$$
\text{Var}[\bar{U}] = \frac{\sigma^2}{n}.
$$

- However, the *B* trees that are 'averaged' in bagging are **not uncorrelated**! This will result into a smaller reduction of the variability.
- **Random forests have the flavour of bagging-of-trees, but they** incorporate a modification that aims at **decorrelating the trees**.

[3.2 The procedure](#page-53-0)

- **Like bagging-of-trees, random forests predict via majority voting** from classification trees trained on B bootstrap samples.
- **However, whenever a split is designed in each tree, the split is only allowed among** m(≪ p) **predictors randomly selected out of the** p **predictors**.
- **The rationale**: in a situation where there would be one strong predictor only, most bagged trees would use this predictor in the top split, which would result in highly correlated trees. The **tweak** above will prevent this, hence will lead to **less correlated trees**.

Using $m = p$ would simply provide bagging-of-trees. Using m small is appropriate when there are many correlated predictors. Common practice:

- For **classification** (where majority voting is used), $m \approx \sqrt{\rho}$.
- For **regression** (where tree predictions are averaged), $m \approx \frac{p}{3}$ $\frac{p}{3}$.

In both cases, results are actually not very sensitive to m.

- ⊠ are **nonparametric** and **efficient**
- ⊠ can deal with **a large number of predictors** (high dimension)
- ⊠ can cope with **both small and large sample sizes** (Big Data)

but they

- rely on a rather **black box** model, and
- are **not supported by strong theoretical results**

[3.3 A simulation](#page-57-0)

We repeated $M = 1000$ times the following experiment:

- (1) Split the channing data set into a training set (of size 300) and a test set (of size 162);
- (2) (a) train a classification tree on the training set and evaluate its test error (i.e., misclassification rate) on the test set;
	- (b) do the same with a bagging classifier using $B = 500$ trees;
	- (c) **do the same with a random forest classifier using the randomForest function in R with default parameters (** $B = 500$ **)** ${\bf t}$ reas, $m \approx \sqrt{p}$).

This provided $M = 1000$ test errors for the direct (single-tree) approach, $M = 1000$ test errors for the bagging approach, and $M = 1000$ test errors for the random forest approach.

THE RESULTS

[3.4 Importance of each predictor](#page-60-0)

Because bagging-of-trees and random forests are poorly interpretable compared to classification trees, the following is useful.

The **importance** v_i of the *j*th predictor is measured as follows.

For each tree (i.e., for any $b = 1, \ldots, B$),

the prediction error on OOB observations is recorded, and **the same is done after permuting randomly** all values of the *i*th predictor (which essentially turns this predictor into noise), the **difference between both errors** is then averaged over $b = 1, \ldots, B$ (and normalized by the standard error—if it is positive), yielding v_j .

(A similar measure is used for regression, based on MSEs).

time

References I

- Breiman, Leo (Aug. 1996). **"Bagging predictors".** en. In: Machine Learning 24.2, pp. 123-140. ISSN: 1573-0565. DOI: [10.1007/BF00058655](https://doi.org/10.1007/BF00058655) (cit. on p. [27\)](#page-26-0).
- BREIMAN, LEO ET AL. (1984). **Classification And Regression Trees.** en. 1st ed. Routledge. ISBN: 978-1-315-13947-0. DOI: [10.1201/9781315139470](https://doi.org/10.1201/9781315139470) (cit. on p. [31\)](#page-30-0).
- F Efron, B. (Jan. 1979). **"Bootstrap Methods: Another Look at the Jackknife".** In: The Annals of Statistics 7.1. ISSN: 0090-5364. DOI: [10.1214/aos/1176344552](https://doi.org/10.1214/aos/1176344552) (cit. on p. [3\)](#page-2-0).
- 晶 Ho, Tin Kam (Aug. 1995). **"Random Decision Forests".** In: Proceedings of 3rd International Conference on Document Analysis and Recognition. Vol. 1, 278-282 vol.1. DOI: [10.1109/ICDAR.1995.598994](https://doi.org/10.1109/ICDAR.1995.598994) (cit. on p. [51\)](#page-50-0).

JAMES, GARETH ET AL. (2021). An Introduction to Statistical **Learning: with Applications in R.** en. Springer Texts in Statistics. New York, NY: Springer US. ISBN: 978-1-07-161417-4. DOI: [10.1007/978-1-0716-1418-1](https://doi.org/10.1007/978-1-0716-1418-1) (cit. on pp. [7,](#page-6-0) [10–](#page-9-0)[12,](#page-11-0) [14,](#page-13-0) [15\)](#page-14-0).

48 / 47