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Introduction

Let X3,..., X, ~ Pgi.i.d. Letf = 9(X1, ..., Xy) be an estimator for 6.
One often wants to evaluate the variance Var[é] to quantify the uncertainty of 0.

The bootstrap is a powerful, broadly applicable method:

¢ to estimate Var[é]
¢ to estimate E[0] — O (bias)
¢ to construct confidence intervals for 6

The method is nonparametric and can deal with small n.

A motivating example
Optimal portfolio

e Let Y and Z be the values of two random assets and consider the portfolio:
Wy=AY+(1-1)Z7, Ael0,1]

allocating a proportion A of your wealth to Y and a proportion 1- 1 to Z.
* A common, risk-averse, strategy is to minimize the risk Var[W,].
* It can be shown that this risk is minimized at

. Var[Z] - Cov[Y, Z]
°P'™ Var[Y] + Var[Z] — 2Covl]Y, Z]

e Butin practice, Var[Y], Var[Z] and Cov[Y, Z] are unknown.

Sample case

Now, if historical data X; = (Y1, Z1),..., X;, = (Yy, Z,) are available, then we can estimate Aqp by

Var[Y] - Cov[Y, Z]
Var[Y] + Var[Z] — 2Cov[Y, Z]

Aopt =

where

o Va’_r[?] is the sample variance of the Y;’s
e Var[Z] is the sample variance of the Z;’s
e CovlY, Z] is the sample covariance of the Y;’s and Z;’s.



How to estimate the accuracy of iopt?

e ...i.e., its standard deviation Std[iopt])?
* On the basis of the available sample, we observe A, only once.
* We need further samples leading to further observations of Agpt.

Figure 1: Portfolio data. For this sample, )Atopt =0.283.

Sampling from the population

We generated 1000 samples from the population. The first three are

1000 3 (i)
i=1 Aopt

e Then: Std[ opfl = \/ ﬁ 2}2010 (iﬁfgt - iopt)z-

* This allows us to compute: )_Lopt = ﬁ >

Here:

- . 1
Std["opd = 077, Aopt® 331 (= Aop = 5 =.333)

and the distribution of iopt is described by

(This could also be used to estimate quantiles of Aop¢.)
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Figure 3: Histogram and boxplot of the empirical distribution of the ftgil))t.




Sampling from the sample: the bootstrap

e Itisimportant to realize that this cannot be done in practice. One cannot sample from the population Py
since it is unknown.

* However, one may sample instead from the empirical distribution P, (i.e., the uniform distribution over
{X1,..., Xn}, thatis close to Py for large n.

e This means that we sample with replacement from {Xj,..., X}, providing a first bootstrap sample
(X ..., X;l) which allows us to evaluate /Alzl()lt).

e Further generating bootstrap samples (Xxb ..., X,’;b), b=2,...,B=1000, one can compute

~ * 1 5 3 *(b 7 %
Std| op{al = Ebzl(ﬂo;()t)_lopt)z
with
1 &
Mpe= = Y 130

Sampling from the sample: the bootstrap

This provides

Std[ opd* = .079

and the distribution of /Alopt is described by
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Figure 4: Histogram and boxplot of the bootstrap distribution of iopt.

(This could again be used to estimate quantiles of ﬁopt.)

A comparison between both samplings

Results are close: Std[ opdl = 0.077 and Std| ) opdl” = 0.079.
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Figure 5: Bootstrap distributions from portfolio data.

The general procedure

The bootstrap

The bootstrap

e Let Xj,..., X, beii.d Py.
e letT=T(Xy,...,X,) be a statistic of interest.
* The bootstrap allows us to say something about the distribution of T

XL X0

(X0, Xxh)

(X;B,.. . X:B) ~ TB=T(XB,...
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* Under mild conditions, the empirical distribution of T*1,..., T*8 provides a good approximation of the

sampling distribution of T under Py.

Above, each bootstrap sample (X} b ...,X*P) is obtained by sampling (uniformly) with replacement among the
original sample (X;,..., X;).

Possible uses:

o I Xb (T*P—T*)?2 with T* = £ ¥ 7| T*?, estimates Var[T]

* The sample a-quantile g; of T*!,..., T*B estimates T’s a-quantile

Possible uses when T is an estimator of 0:

(X P, T*Y) — T estimates the bias E[T] -6 of T



o [q; [29 qf_ @ /2)] is an approximate (1 — a)-confidence interval for 6.

About the implementation in R
A toy illustration
e Let Xj,..., X, (n=4) beii.d ¢-distributed with 6 degrees of freedom.

e LetX = %2?21 X; be the sample mean.
» How to estimate the variance of X through the bootstrap?

n <-4
(X <- rt(n,df=6))

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

Xbar <- mean(X)
Xbar

[1] 0.0344589

Obtaining a bootstrap sample

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

d <- sample(l:n,n,replace=TRUE)
d

(11 244 4

Xstar <- X[d]
Xstar

[1] 0.2804408 -1.2521279 -1.2521279 -1.2521279

Generating B = 1000 bootstrap means

B <- 1000

Bootmeans <- vector(length = B)

for (b in (1:B)) {
d <- sample(l:n, n, replace = TRUE)
Bootmeans [b] <- mean(X[d])

}

Bootmeans[1:4]

[1] 0.2370868 -0.3486833 0.3521335 0.2370868



Bootstrap estimates
Bootstrap estimates of E[X] and Var[X] are then given by

mean (Bootmeans)

[1] 0.03679914

var (Bootmeans)

[1] 0.1789107

The practical sessions will explore how well such estimates behave.

The boot function
A better strategy is to use the boot function from

library(boot)

The boot function takes typically 3 arguments:

* data: the original sample
* statistic: a user-defined function with the statistic to bootstrap

- lstargument: a generic sample
- 2nd argument: a vector of indices pointing to a subsample on which the statistic is to be evaluated...

* R: the number B of bootstrap samples to consider

If the statistic is the mean, then a suitable user-defined function is
boot.mean <- function(x,d) {

mean (x[d])
}

The bootstrap estimate of Var[X] is then

res.boot <- boot(X,boot.mean,R=1000)
var (res.boot$t)

[,1]
[1,]1 0.1844024
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