Bootstrap

High-Dimensional Data Analysis and Machine Learning

Camille Mondon

Introduction

Let $X_1, \ldots, X_n \sim P_{\theta}$ i.i.d. Let $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ be an estimator for θ .

One often wants to evaluate the **variance** $Var[\hat{\theta}]$ to quantify the uncertainty of $\hat{\theta}$.

The bootstrap is a powerful, broadly applicable method:

- to estimate $Var[\hat{\theta}]$
- to estimate $\mathbb{E}[\hat{\theta}] \theta$ (**bias**)
- to construct confidence intervals for θ
- ...

The method is nonparametric and can deal with small *n*.

A motivating example

Optimal portfolio

• Let *Y* and *Z* be the values of two random assets and consider the portfolio:

$$W_{\lambda} = \lambda Y + (1-\lambda)Z, \qquad \lambda \in [0,1]$$

allocating a proportion λ of your wealth to *Y* and a proportion $1 - \lambda$ to *Z*.

- A common, risk-averse, strategy is to minimize the risk $Var[W_{\lambda}]$.
- It can be shown that this risk is minimized at

$$\lambda_{\text{opt}} = \frac{\text{Var}[Z] - \text{Cov}[Y, Z]}{\text{Var}[Y] + \text{Var}[Z] - 2\text{Cov}[Y, Z]}$$

• But in practice, Var[*Y*], Var[*Z*] and Cov[*Y*, *Z*] are **unknown**.

Sample case

Now, if historical data $X_1 = (Y_1, Z_1), \dots, X_n = (Y_n, Z_n)$ are available, then we can estimate λ_{opt} by

$$\hat{\lambda}_{\text{opt}} = \frac{\widehat{\text{Var}[Y]} - \widehat{\text{Cov}[Y, Z]}}{\widehat{\text{Var}[Y]} + \widehat{\text{Var}[Z]} - 2\widehat{\text{Cov}[Y, Z]}}$$

where

- $\widehat{\text{Var}[Y]}$ is the sample variance of the Y_i 's
- $\widehat{\text{Var}[Z]}$ is the sample variance of the Z_i 's
- $\widehat{\text{Cov}[Y, Z]}$ is the sample covariance of the Y_i 's and Z_i 's.

How to estimate the accuracy of $\hat{\lambda}_{\text{opt}}$?

- ... i.e., its standard deviation $Std[\hat{\lambda}_{opt}]$?
- On the basis of the available sample, we observe $\hat{\lambda}_{opt}$ only once.
- We need further samples leading to further observations of $\hat{\lambda}_{opt}.$

Figure 1: Portfolio data. For this sample, $\hat{\lambda}_{opt} = 0.283$.

Sampling from the population

We generated 1000 samples from the population. The first three are

- This allows us to compute: $\bar{\lambda}_{opt} = \frac{1}{1000} \sum_{i=1}^{1000} \hat{\lambda}_{opt}^{(i)}$ Then: $\widehat{\operatorname{Std}}_{opt} = \sqrt{\frac{1}{999} \sum_{i=1}^{1000} (\hat{\lambda}_{opt}^{(i)} \bar{\lambda}_{opt})^2}.$

Here:

$$\widehat{\text{Std}[\ _{\text{opt}}^{}} \approx .077, \qquad \bar{\lambda}_{\text{opt}} \approx .331 \ (\approx \lambda_{\text{opt}} = \frac{1}{3} = .333)$$

and the distribution of $\hat{\lambda}_{opt}$ is described by

(This could also be used to estimate quantiles of $\hat{\lambda}_{opt}$.)

Figure 2: $\hat{\lambda}_{opt}^{(1)} = 0.283$, $\hat{\lambda}_{opt}^{(2)} = 0.357$, $\hat{\lambda}_{opt}^{(3)} = 0.299$.

Figure 3: Histogram and boxplot of the empirical distribution of the $\hat{\lambda}_{\mathrm{opt}}^{(i)}.$

Sampling from the sample: the bootstrap

- It is important to realize that this cannot be done in practice. One cannot sample from the population P_θ since it is unknown.
- However, one may sample instead from the empirical distribution P_n (i.e., the uniform distribution over $\{X_1, \ldots, X_n\}$, that is close to P_{θ} for large *n*.
- This means that we sample with replacement from $\{X_1, \ldots, X_n\}$, providing a first **bootstrap sample** $(X_1^{*1}, \ldots, X_n^{*1})$ which allows us to evaluate $\hat{\lambda}_{opt}^{*(1)}$.
- Further generating bootstrap samples $(X_1^{*b}, \dots, X_n^{*b}), b = 2, \dots, B = 1000$, one can compute

$$\widehat{\operatorname{Std}}_{\operatorname{opt}}^{*} = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} (\hat{\lambda}_{\operatorname{opt}}^{*(b)} - \bar{\lambda}_{\operatorname{opt}}^{*})^2}$$

with

$$\bar{\lambda}_{\text{opt}}^* = \frac{1}{1000} \sum_{b=1}^B \hat{\lambda}_{\text{opt}}^{*(b)}$$

Sampling from the sample: the bootstrap

This provides

$$\widehat{\mathrm{Std}[\ _{\mathrm{opf}}^{\ast}]^{\ast}}\approx.079$$

and the distribution of $\hat{\lambda}_{opt}$ is described by

Figure 4: Histogram and boxplot of the bootstrap distribution of $\hat{\lambda}_{opt}$.

(This could again be used to estimate quantiles of $\hat{\lambda}_{opt}$.)

A comparison between both samplings

Results are close: $\widetilde{\text{Std}[_{opt}]} \approx 0.077$ and $\widetilde{\text{Std}[_{opt}]}^* \approx 0.079$.

Figure 5: Bootstrap distributions from portfolio data.

The general procedure

The bootstrap

- Let X_1, \ldots, X_n be i.i.d P_{θ} .
- Let $T = T(X_1, ..., X_n)$ be a statistic of interest.
- The bootstrap allows us to say something about the distribution of *T*:

$$\begin{array}{rcl} (X_1^{*1},\ldots,X_n^{*1}) & \rightsquigarrow & T^{*1} = T(X_1^{*1},\ldots,X_n^{*1}) \\ & & \vdots \\ (X_1^{*b},\ldots,X_n^{*b}) & \rightsquigarrow & T^{*b} = T(X_1^{*b},\ldots,X_n^{*b}) \\ & & \vdots \\ (X_1^{*B},\ldots,X_n^{*B}) & \rightsquigarrow & T^{*B} = T(X_1^{*B},\ldots,X_n^{*B}) \end{array}$$

• Under mild conditions, the empirical distribution of T^{*1}, \ldots, T^{*B} provides a good approximation of the sampling distribution of T under P_{θ} .

The bootstrap

Above, each bootstrap sample $(X_1^{*b}, \dots, X_n^{*b})$ is obtained by sampling (uniformly) with replacement among the original sample (X_1, \ldots, X_n) .

Possible uses:

- $\frac{1}{B-1}\sum_{b=1}^{B} (T^{*b} \overline{T}^{*})^2$, with $\overline{T}^* = \frac{1}{B}\sum_{b=1}^{B} T^{*b}$, estimates **Var**[**T**] The sample α -quantile q_{α}^* of T^{*1}, \ldots, T^{*B} estimates *T*'s α -quantile

Possible uses when *T* is an estimator of θ :

• $(\frac{1}{B}\sum_{b=1}^{B}T^{*b}) - T$ estimates **the bias** $\mathbb{E}[T] - \theta$ of T

• $[q_{\alpha/2}^*, q_{1-(\alpha/2)}^*]$ is an approximate $(1 - \alpha)$ -confidence interval for θ .

```
• ...
```

About the implementation in R

A toy illustration

- Let X_1, \ldots, X_n (n = 4) be i.i.d *t*-distributed with 6 degrees of freedom.
- Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the sample mean.
- How to estimate the variance of \bar{X} through the bootstrap?

n <- 4
(X <- rt(n,df=6))</pre>

```
[1] -0.08058779 0.28044078 1.19011050 -1.25212790
```

Xbar <- mean(X) Xbar

[1] 0.0344589

Obtaining a bootstrap sample

Х

```
[1] -0.08058779 0.28044078 1.19011050 -1.25212790
```

```
d <- sample(1:n,n,replace=TRUE)
d</pre>
```

[1] 2 4 4 4

Xstar <- X[d] Xstar

[1] 0.2804408 -1.2521279 -1.2521279 -1.2521279

Generating B = 1000 bootstrap means

```
B <- 1000
Bootmeans <- vector(length = B)
for (b in (1:B)) {
    d <- sample(1:n, n, replace = TRUE)
    Bootmeans[b] <- mean(X[d])
}
Bootmeans[1:4]</pre>
```

[1] 0.2370868 -0.3486833 0.3521335 0.2370868

Bootstrap estimates

Bootstrap estimates of $\mathbb{E}[\bar{X}]$ and $\operatorname{Var}[\bar{X}]$ are then given by

mean(Bootmeans)

[1] 0.03679914

var(Bootmeans)

[1] 0.1789107

The practical sessions will explore how well such estimates behave.

The boot function

A better strategy is to use the boot function from

```
library(boot)
```

The boot function takes typically 3 arguments:

- data: the original sample
- statistic: a user-defined function with the statistic to bootstrap
 - 1st argument: a generic sample
 - 2nd argument: a vector of indices pointing to a subsample on which the statistic is to be evaluated...
- R: the number *B* of bootstrap samples to consider

If the statistic is the mean, then a suitable **user-defined function** is

```
boot.mean <- function(x,d) {
   mean(x[d])
}</pre>
```

The bootstrap estimate of $Var[\bar{X}]$ is then

```
res.boot <- boot(X,boot.mean,R=1000)
var(res.boot$t)</pre>
```

[,1] [1,] 0.1844024