
Bootstrap
High-Dimensional Data Analysis and Machine Learning

Camille Mondon

Introduction

Let X1, . . . , Xn ∼ Pθ i.i.d. Let θ̂ = θ̂(X1, . . . , Xn) be an estimator for θ.

One often wants to evaluate the variance Var[θ̂] to quantify the uncertainty of θ̂.

The bootstrap is a powerful, broadly applicable method:

• to estimate Var[θ̂]
• to estimate E[θ̂]−θ (bias)
• to construct confidence intervals for θ
• . . .

The method is nonparametric and can deal with small n.

A motivating example

Optimal portfolio

• Let Y and Z be the values of two random assets and consider the portfolio:

Wλ =λY + (1−λ)Z , λ ∈ [0,1]

allocating a proportion λ of your wealth to Y and a proportion 1−λ to Z .
• A common, risk-averse, strategy is to minimize the risk Var[Wλ].
• It can be shown that this risk is minimized at

λopt = Var[Z ]−Cov[Y , Z ]

Var[Y ]+Var[Z ]−2Cov[Y , Z ]

• But in practice, Var[Y ], Var[Z ] and Cov[Y , Z ] are unknown.

Sample case

Now, if historical data X1 = (Y1, Z1), . . . , Xn = (Yn , Zn) are available, then we can estimate λopt by

λ̂opt =
àVar[Y ]− áCov[Y , Z ]àVar[Y ]+ àVar[Z ]−2 áCov[Y , Z ]

where

• àVar[Y ] is the sample variance of the Yi ’s
• àVar[Z ] is the sample variance of the Zi ’s
• áCov[Y , Z ] is the sample covariance of the Yi ’s and Zi ’s.
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How to estimate the accuracy of λ̂opt?

• . . . i.e., its standard deviation Std[λ̂opt])?
• On the basis of the available sample, we observe λ̂opt only once.
• We need further samples leading to further observations of λ̂opt.
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Figure 1: Portfolio data. For this sample, λ̂opt = 0.283.

Sampling from the population

We generated 1000 samples from the population. The first three are

• This allows us to compute: λ̄opt = 1
1000

∑1000
i=1 λ̂(i )

opt

• Then: áStd[ ˆ
opt]λ=

√
1

999

∑1000
i=1 (λ̂(i )

opt − λ̄opt)2.

Here: áStd[ ˆ
opt]λ≈ .077, λ̄opt ≈ .331 (≈λopt = 1

3
= .333)

and the distribution of λ̂opt is described by

(This could also be used to estimate quantiles of λ̂opt.)
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Figure 2: λ̂(1)
opt = 0.283, λ̂(2)

opt = 0.357, λ̂(3)
opt = 0.299.
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Figure 3: Histogram and boxplot of the empirical distribution of the λ̂(i )
opt.
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Sampling from the sample: the bootstrap

• It is important to realize that this cannot be done in practice. One cannot sample from the population Pθ

since it is unknown.
• However, one may sample instead from the empirical distribution Pn (i.e., the uniform distribution over

{X1, . . . , Xn}, that is close to Pθ for large n.
• This means that we sample with replacement from {X1, . . . , Xn}, providing a first bootstrap sample

(X ∗1
1 , . . . , X ∗1

n ) which allows us to evaluate λ̂∗(1)
opt .

• Further generating bootstrap samples (X ∗b
1 , . . . , X ∗b

n ), b = 2, . . . ,B = 1000, one can compute

áStd[ ˆ
opt]λ

∗ =
√√√√ 1

B −1

B∑
b=1

(λ̂∗(b)
opt − λ̄∗

opt)
2

with

λ̄∗
opt =

1

1000

B∑
b=1

λ̂∗(b)
opt

Sampling from the sample: the bootstrap

This provides áStd[ ˆ opt]λ
∗ ≈ .079

and the distribution of λ̂opt is described by
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Figure 4: Histogram and boxplot of the bootstrap distribution of λ̂opt.

(This could again be used to estimate quantiles of λ̂opt.)

A comparison between both samplings

Results are close: áStd[ ˆ opt]λ≈ 0.077 and áStd[ ˆ opt]λ∗ ≈ 0.079.
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Figure 5: Bootstrap distributions from portfolio data.

The general procedure

The bootstrap

• Let X1, . . . , Xn be i.i.d Pθ.
• Let T = T (X1, . . . , Xn) be a statistic of interest.
• The bootstrap allows us to say something about the distribution of T :

(X ∗1
1 , . . . , X ∗1

n ) ⇝ T ∗1 = T (X ∗1
1 , . . . , X ∗1

n )

...

(X ∗b
1 , . . . , X ∗b

n ) ⇝ T ∗b = T (X ∗b
1 , . . . , X ∗b

n )

...

(X ∗B
1 , . . . , X ∗B

n ) ⇝ T ∗B = T (X ∗B
1 , . . . , X ∗B

n )

• Under mild conditions, the empirical distribution of T ∗1, . . . ,T ∗B provides a good approximation of the
sampling distribution of T under Pθ.

The bootstrap

Above, each bootstrap sample (X ∗b
1 , . . . , X ∗b

n ) is obtained by sampling (uniformly) with replacement among the
original sample (X1, . . . , Xn).

Possible uses:

• 1
B−1

∑B
b=1(T ∗b − T̄ ∗)2, with T̄ ∗ = 1

B

∑B
b=1 T ∗b , estimates Var[T]

• The sample α-quantile q∗
α of T ∗1, . . . ,T ∗B estimates T ’s α-quantile

Possible uses when T is an estimator of θ:

• ( 1
B

∑B
b=1 T ∗b)−T estimates the bias E[T ]−θ of T
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• [q∗
α/2, q∗

1−(α/2)] is an approximate (1−α)-confidence interval for θ.
• . . .

About the implementation in R

A toy illustration

• Let X1, . . . , Xn (n = 4) be i.i.d t-distributed with 6 degrees of freedom.
• Let X̄ = 1

n

∑n
i=1 Xi be the sample mean.

• How to estimate the variance of X̄ through the bootstrap?

n <- 4
(X <- rt(n,df=6))

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

Xbar <- mean(X)
Xbar

[1] 0.0344589

Obtaining a bootstrap sample

X

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

d <- sample(1:n,n,replace=TRUE)
d

[1] 2 4 4 4

Xstar <- X[d]
Xstar

[1] 0.2804408 -1.2521279 -1.2521279 -1.2521279

Generating B = 1000 bootstrap means

B <- 1000
Bootmeans <- vector(length = B)
for (b in (1:B)) {

d <- sample(1:n, n, replace = TRUE)
Bootmeans[b] <- mean(X[d])

}
Bootmeans[1:4]

[1] 0.2370868 -0.3486833 0.3521335 0.2370868
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Bootstrap estimates

Bootstrap estimates of E[X̄ ] and Var[X̄ ] are then given by

mean(Bootmeans)

[1] 0.03679914

var(Bootmeans)

[1] 0.1789107

The practical sessions will explore how well such estimates behave.

The boot function

A better strategy is to use the boot function from

library(boot)

The boot function takes typically 3 arguments:

• data: the original sample
• statistic: a user-defined function with the statistic to bootstrap

– 1st argument: a generic sample
– 2nd argument: a vector of indices pointing to a subsample on which the statistic is to be evaluated. . .

• R: the number B of bootstrap samples to consider

If the statistic is the mean, then a suitable user-defined function is

boot.mean <- function(x,d) {
mean(x[d])

}

The bootstrap estimate of Var[X̄ ] is then

res.boot <- boot(X,boot.mean,R=1000)
var(res.boot$t)

[,1]
[1,] 0.1844024
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