

Worksheet 1 – Linear Discriminant Analysis

High-Dimensional Data Analysis and Machine Learning

Camille Mondon

January 12, 2026

1 LDA on Insurance Data

Exercise 1. The data set we consider comes from an insurance company and contains information about **2220 young drivers** who have a car insurance contract. The available variables are:

- **TYPE**: the type of insurance contract (A: good, B: medium, C: minimum)
- **VALUE**: the value of the insured vehicle (1 = very low, 2 = low, 3 = medium, 4 = high)
- **SEX**: the sex of the insured (1 = man, 0 = woman)
- **AGEV**: the age of the vehicle
- **AGEI**: the age of the insured

You may use either **R** or **Python** to answer the following questions.

1. Load the data `insurance.csv`¹ and provide a short description of the variables. You should:

- Display the first few rows of the dataset.
- Compute summary statistics for each variable.
- Provide counts for each category of the **TYPE** variable.

Hint: You may use `summary()` and `table()` in R, or `describe()` and `value_counts()` in Python.

2. Randomly split the dataset into a **training sample** and a **test sample**.

- Use approximately 70% of the observations for training and 30% for testing.
- Ensure that all levels of the **TYPE** variable are represented in both samples.

Hint: In R, you can use `sample()` or the `caret` package. In Python, you can use `train_test_split` from `sklearn.model_selection`.

3. Using the training sample, predict the type of insurance contract (**TYPE**) using the explanatory variables **VALUE**, **SEX**, **AGEV**, and **AGEI**.

¹You can download it [here](#).

- Fit a **Linear Discriminant Analysis (LDA)** model on the training sample.
- Compute predicted classes for the test sample.
- Evaluate the model's accuracy using a confusion matrix.

Hint: In R, use `MASS::lda()`. In Python, use `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`.

 Remark

Remark 1.1.

- Ensure that categorical variables have the correct type before applying LDA.
- Standardizing numerical variables is not required for LDA but may affect the interpretation of coefficients.

4. Interpret the results obtained from LDA:

- Comment on which variables appear most influential in discriminating between the insurance contract types (using the R^2 equivalent in LDA).
- Interpret the variables in the discriminant subspace using the correlations.
- Discuss any misclassification patterns observed in the test sample.
- Reflect on the overall accuracy of LDA and its usefulness for predicting **TYPE**.

Hint: Use the confusion matrix to identify which classes are most often misclassified. You may also inspect the LDA coefficients to assess variable importance.

5. Why isn't it possible to draw a ROC curve? How can you modify the insurance variables so that it becomes possible?