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1 Introduction

Let X3,..., X, ~ Pgi.i.d. Letf = é(Xl, ..., Xy) be an estimator for 6.
One often wants to evaluate the variance Var[é] to quantify the uncertainty of 0.

The bootstrap is a powerful, broadly applicable method:

¢ to estimate the variance Var[é]

* to estimate the bias E[f] — 0

e to construct confidence intervals for 6

* more generally, to estimate the distribution of .

The method is nonparametric and can deal with small 7.

2 A motivating example

James et al. (2021)

2.1 Optimal portfolio

e Let Y and Z be the values of two random assets and consider the portfolio:
Wy=AY+1-1)Z7, Ael0,1]

allocating a proportion A of your wealth to Y and a proportion 1 - A to Z.
* A common, risk-averse, strategy is to minimize the risk Var[W,].
* It can be shown that this risk is minimized at
B Var[Z] — CovlY, Z]
B Var|Y]+ Var[Z] —2Covl|Y, Z]
* But in practice, Var[Y], Var[Z] and Cov[Y, Z] are unknown.

)Lopt

2.2 Sample case

Now, if historical data X; = (Y1, Z1),..., Xy = (Y, Z;) are available, then we can estimate Aqpc by

P Var[Y] + Var[ Z] — 2Cov[Y, Z]

where

e Var[Y] is the sample variance of the Y;’s
¢ Var[Z] is the sample variance of the Z;’s
e CovlY, Z] is the sample covariance of the Y;’s and Z;’s.


https://davy.paindaveine.web.ulb.be
https://nathalievialaneix.eu

2.3 How to estimate the accuracy of /iopt?

e ...i.e., its standard deviation Std[iopt]?
* Using the available sample, we observe A, only once.
* We need further samples leading to further observations of Agpt.

Figure 1: Portfolio data. For this sample, iopt =(0.283 (James et al. 2021).

2.4 Sampling from the population: infeasible

We generated 1000 samples from the population. The first three are:

1000 3 (9)
i=1 Aopt

* Then: Std[ " opdl = |/ k5 ZL P AD, - Aop2.

¢ This allows us to compute: iopt = ﬁ Y

Here:

- 1
Stdl op = 0.077,  Aope = 0.331 (= Aop = 5 =0.333)

(This could also be used to estimate quantiles of Aopt.)
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Figure 2: 1Y) =0.283, A®) =0.357, Ai]p]l =0.299 (James et al. 2021).
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Figure 3: Histogram and boxplot of the empirical distribution of the A
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. James et al. 2021).




2.5 Sampling from the sample: the bootstrap

e Itisimportant to realize that this cannot be done in practice. One cannot sample from the population Py

since it is unknown.

* However, one may sample instead from the empirical distribution P, (i.e., the uniform distribution over
(X1,...,Xn)), thatis close to Py for large n.
e This means that we sample with replacement from (Xj,...,X},), providing a first bootstrap sample

(Xl ..., X;l) which allows us to evaluate 1

*(1)
opt *

e Further generating bootstrap samples (Xxb..., X,’;b), b=2,...,B=1000, one can compute

with

~ * 1 5 2% 2 %
Std| op{al = J E Z (ﬂogi) - Aopt)2

This provides
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Std[  opdl* = 0.079
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Figure 4: Histogram and boxplot of the bootstrap distribution of /Alopt (James et al. 2021).

(This could again be used to estimate quantiles of iopt.)

2.6 A comparison between both samplings

Results are close: Std[ opdl = 0.077 and Std| ) opdl” = 0.079.

3 The general procedure

3.1 The bootstrap (Efron 1979)

e Let Xj,..., X, beiid~ Py.



Infeasible

Bootstrap

150 250

50

150 250

50

0.6
I

i
o

04

0.3

0.2

o
[o}
o
—e
1
1
I
1
I
1
1
|
1
1
I
1
I
1
1
_
o

0.1

0.0

o

8

o

_—

1
!
1
1
1
1
1
1

T
Infeasible

Figure 5: Bootstrap distributions from portfolio data (James et al. 2021).
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Figure 6: The framework of bootstrap.
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e LetT=T(Xy,...,X,) be a statistic of interest.
* The bootstrap allows us to approximate the distribution of 7.

e Each bootstrap sample (X??,..., X ;b ) is obtained by sampling (uniformly) with replacement among the
original sample (Xj,..., X}).

 Under mild conditions, the empirical distribution of (T*!,..., T*8) provides a good approximation of the
sampling distribution of T under Py.

¢ Possible uses:

- ﬁ Z]g:l(T*b —T%)2, with T* = %Zgzl T*b, estimates Var[T]
- The sample a-quantile g, of (T*1,..., T*B) estimates T’s a-quantile

¢ Possible uses when T is an estimator of 0:

- (3 X8 T*P) - T estimates the bias E[T] — 0 of T
- 14y, qf_(a /)] is an approximate (1 - a)-confidence interval for 0.

4 About the implementation in R

4.1 Atoyillustration
e Let Xj,..., X, (n=4) beii.d ¢-distributed with 6 degrees of freedom.

e LetX = %Z:‘l:l X; be the sample mean.
 How to estimate the variance of X through the bootstrap?

n <-4
(X <- rt(n,df=6))

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

Xbar <- mean(X)
Xbar

[1] 0.0344589

4.2 Obtaining a bootstrap sample

[1] -0.08058779 0.28044078 1.19011050 -1.25212790

d <- sample(l:n,n,replace=TRUE)
d

(1] 244 4



Xstar <- X[d]
Xstar

[1] 0.2804408 -1.2521279 -1.2521279 -1.2521279

4.3 Generating B = 1000 bootstrap means

B <- 1000

Bootmeans <- vector(length = B)

for (b in (1:B)) {
d <- sample(l:n, n, replace = TRUE)
Bootmeans [b] <- mean(X[d])

}
Bootmeans[1:4]

[1] 0.2370868 -0.3486833 0.3521335 0.2370868

4.4 Bootstrap estimates
Bootstrap estimates of E[X] and Var[X] are then given by

mean (Bootmeans)

[1] 0.03679914

var (Bootmeans)

[1] 0.1789107

The practical sessions will explore how well such estimates behave.

4.5 The boot function
A better strategy is to use the boot function from

library(boot)

The boot function takes typically 3 arguments:

* data: the original sample
e statistic: a user-defined function with the statistic to bootstrap

- lstargument: a generic sample
— 2nd argument: a vector of indices pointing to a subsample on which the statistic is to be evaluated. ..

e R:the number B of bootstrap samples to consider




If the statistic is the mean, then a suitable user-defined function is

boot.mean <- function(x,d) {
mean (x[d])
}

The bootstrap estimate of Var[X] is then

res.boot <- boot(X,boot.mean,R=1000)
var (res.boot$t)

[,1]
[1,] 0.1844024
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