
Bagging
From a course by Davy Paindaveine and Nathalie Vialaneix

Camille Mondon

1 Introduction

• Designed by Breiman (1996).
• The bootstrap has other uses than those described in the last chapter.
• In particular, it allows us to design ensemble methods in statistical learning.
• Bagging (Bootstrap Aggregating), which is the most famous approach in this direction, can be applied to

both regression and classification.
• Below, we mainly focus on bagging of classification trees, but it should be clear that bagging of regression

trees can be performed similarly.

2 Classification trees

2.1 The classification problem

• In classification, one observes (Xi ,Yi ), i = 1, . . . ,n, where

– Xi collects the values of p predictors on individual i , and
– Yi ∈ {1,2, . . . ,K } is the class to which individual i belongs.

• The problem is to classify a new observation for which we only see x, that is, to bet on the corresponding
value y ∈ {1,2, . . . ,K }.

• A classifier is a mapping

φS : X → {1,2, . . . ,K }

x 7→ φS (x),

that is designed using the sample S = {(Xi ,Yi ), i = 1, . . . ,n}.

library(boot)
data(channing)
channing <- channing[, c("sex", "entry", "time", "cens")]
n <- nrow(channing)
channing[sample(1:n, 4), ]

sex entry time cens

262 Female 890 115 0
416 Female 994 46 1
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sex entry time cens

10 Male 837 108 1
220 Female 810 85 0

Predict sex ∈ {Male,Female} on the basis of two numerical predictors (entry, time) and a binary one (cens).

2.2 Classification trees

In Chapter 3 of this course, we learned about a special type of classifiers φS , namely classification trees (Breiman et
al. 1984).

library(rpart)
library(rpart.plot)
fitted.tree <- rpart(sex ~ .,

data = channing,
method = "class"

)
rpart.plot(fitted.tree)
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The process of averaging will reduce variability, hence, improve stability. Recall indeed that, if U1, . . . ,Un are
uncorrelated with variance σ2, then

Var[Ū ] = σ2

n
·
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Since unpruned trees have low bias (but high variance), this reduced variance will lead to a low value of

MSE = Var+ (Bias)2

which will ensure a good performance.

How to perform this averaging?

3 Bagging of classification trees

3.1 Bagging

Denote as φS (x) the predicted class for predictor value x returned by the classification tree associated with sample
S = {(Xi ,Yi ), i = 1, . . . ,n}.

Bagging of this tree considers predictions from B bootstrap samples

S ∗1 = ((X ∗1
1 ,Y ∗1

1 ), . . . , (X ∗1
n ,Y ∗1

n )) ⇝ φS ∗1 (x)
...

...
S ∗b = ((X ∗b

1 ,Y ∗b
1 ), . . . , (X ∗b

n ,Y ∗b
n )) ⇝ φS ∗b (x)

...
...

S ∗B = ((X ∗B
1 ,Y ∗B

1 ), . . . , (X ∗B
n ,Y ∗B

n )) ⇝ φS ∗B (x)

then proceeds by majority voting (i.e., the most frequently predicted class wins):

φ
Bagging
S

(x) = argmax
k∈{1,...,K }

#{b :φS ∗b (x) = k}

3.2 Toy illustration: bagging with B = 3 trees

library(boot)
set.seed(20)
d <- sample(1:n, replace = TRUE)
fitted.tree <- rpart(sex ~ ., data = channing[d, ], method = "class")
rpart.plot(fitted.tree)
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Figure 1: Classification tree from the first bootstrap sample.
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d <- sample(1:n, replace = TRUE)
fitted.tree <- rpart(sex ~ ., data = channing[d, ], method = "class")
rpart.plot(fitted.tree)
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Figure 2: Classification tree from the second bootstrap sample.
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d <- sample(1:n, replace = TRUE)
fitted.tree <- rpart(sex ~ ., data = channing[d, ], method = "class")
rpart.plot(fitted.tree)
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Figure 3: Classification tree from the third bootstrap sample.
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For x = (entry, time, cens)= (782,127,1),

• two (out of the B = 3 trees) voted for Male
• one (out of the B = 3 trees) voted for Female,

the bagging classifier will thus classify x into Male.

Of course, B is usually much larger (B = 500? B = 1000?), which requires automating the process (through, e.g., the
boot function).
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4 How much do you gain?

4.1 A simulation

We repeat M = 1000 times the following experiment:

(1) Split the data set into a training set (of size 300) and a test set (of size 162);
(2) (a) train a classification tree on the training set and evaluate its test error (i.e., misclassification rate) on the test

set;
(b) do the same with a bagging classifier using B = 500 trees.

This provides M = 1000 test errors for the direct (single-tree) approach, and M = 1000 test errors for the bagging
approach.
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Figure 4: Results of the simulation (Q-Q plot and boxplot).

5 Estimating the prediction accuracy

5.1 Estimating the prediction (lack of ) accuracy

Several strategies to estimate prediction accuracy of a classifier:

(1) Compute a test error (as above): Partition the data set S into a training set Strain (to train the classifier) and a
test set Stest (on which to evaluate the misclassification rate etest).

(2) Compute an L-fold cross-validation error:

Partition the data set S into L folds Sℓ, ℓ= 1, . . . ,L. For each ℓ, evaluate the test error etest,ℓ associated with training
set S \Sℓ and test set Sℓ.
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Table 5: L-fold cross-validation framework.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Run ℓ=1 Test Train Train Train Train
Run ℓ=2 Train Test Train Train Train
Run ℓ=3 Train Train Test Train Train
Run ℓ=4 Train Train Train Test Train
Run ℓ=5 Train Train Train Train Test

Then the (L-fold) ‘cross-validation error’ is:

eCV = 1

L

L∑
ℓ=1

etest,ℓ

(3) Compute the Out-Of-Bag (OOB) error1:

For each observation Xi from S , define the OOB prediction as

φOOB
S (Xi ) = argmax

k∈{1,...,K }
#{b :φS ∗b (Xi ) = k and (Xi ,Yi ) ∉S ∗b}

This is a majority voting discarding, quite naturally, bootstrap samples that use (Xi ,Yi ) to train the classification
tree. The OOB error is then the corresponding misclassification rate

eOOB = 1

n

n∑
i=1

1[φOOB
S (Xi ) ̸= Yi ]

5.2 Final remarks

• Bagging of trees can also be used for regression. The only difference is that majority voting is then replaced
with an averaging of individual predicted responses.

• Bagging is a general device that applies to other types of classifiers. In particular, it can be applied to k-NN
classifiers (we will illustrate this in the practical sessions).

• Bagging affects interpretability of classification trees. There are, however, solutions that intend to measure
importance of the various predictors (see the next section).
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1This is for bagging procedures only.
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